
AdaControl Programmer Manual

1

Last edited: 3 August 2010

This is the AdaControl Programmer Manual. It is intended for those who want to add
new rules to AdaControl, or more generally modify (and presumably improve!) AdaControl.
Reading this manual is not necessary to use AdaControl. On the other hand, it is assumed that
the reader is familiar with how to use AdaControl.

Commercial support is available for AdaControl. If you plan to use AdaControl for industrial
projects, or if you want it to be customized or extended to match your own needs, please contact
Adalog at info@adalog.fr.

AdaControl is Copyright c© 2005-2010 Eurocontrol/Adalog, except for some specific modules
that are c© 2006 Belgocontrol/Adalog, c© 2006 CSEE/Adalog, or c© 2006 SAGEM/Adalog.
AdaControl is free software; you can redistribute it and/or modify it under terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at
your option) any later version. This unit is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
details. You should have received a copy of the GNU General Public License distributed with
this program; see file COPYING. If not, write to the Free Software Foundation, 59 Temple Place
- Suite 330, Boston, MA 02111-1307, USA.

As a special exception, if other files instantiate generics from this program, or if you link
units from this program with other files to produce an executable, this does not by itself cause
the resulting executable to be covered by the GNU General Public License. This exception does
not however invalidate any other reasons why the executable file might be covered by the GNU
Public License.

This document is Copyright c© 2005-2010 Eurocontrol/Adalog. This document may be
copied, in whole or in part, in any form or by any means, as is or with alterations, provided
that (1) alterations are clearly marked as alterations and (2) this copyright notice is included
unmodified in any copy.

mailto::info@adalog.fr

i

Table of Contents

1 General . 2
1.1 vocabulary . 2
1.2 General organization . 2

2 The framework and utilities packages . 3
2.1 The package Adactl Constants . 3
2.2 The package Framework . 3
2.3 The package Framework.Rules Manager . 3
2.4 The package Framework.Reports . 4
2.5 The package Framework.Language . 4
2.6 The package Framework.Scope Manager . 5
2.7 The package Framework.Plugs . 5
2.8 The package Rules . 5
2.9 The package Utilities . 5
2.10 The package Thick Queries . 6
2.11 The packages Linear Queue and Binary Map . 6
2.12 The package A4G Bugs . 6

3 Writing a new rule . 8
3.1 General considerations . 8
3.2 Specification . 8

3.2.1 Rule ID . 8
3.2.2 Process . 8

3.3 Body . 9
3.3.1 Help . 9
3.3.2 Add Control . 9
3.3.3 Command . 10
3.3.4 Prepare . 10
3.3.5 Process . 11
3.3.6 Finalize . 11
3.3.7 Package statements . 11

3.4 Programming rules and tips . 11
3.4.1 style . 12
3.4.2 Things to care about . 12
3.4.3 Using ASIS efficiently. 12

4 Plugging-in a new rule into the framework 13
4.1 Normal case . 13
4.2 Specific rules . 14
4.3 User documentation . 14

5 Testing and debugging a rule . 15
5.1 Testing . 15
5.2 Debugging aids . 15
5.3 Integrating the test in the test suite . 16

Chapter 1: General 2

1 General

This programmer manual describes how to add new rules to AdaControl. Since AdaControl is
based on ASIS, this manual assumes that the reader has some familiarity with ASIS program-
ming.

1.1 vocabulary

Some terms have a precise definition in AdaControl, and will be used with that signification in
the rest of this manual.

A rule is an AdaControl package whose purpose is to recognize occurrences of certain con-
structs in Ada programs. All rules are children of the “Rules” package. By extension, the term
rule is also used to designate the check that is performed by the package. A rule has a name,
and may have parameters.

A control defines a check to be performed on some Ada text. A control is defined by a rule,
and the value of the parameters given to the rule.

A command is a statement in the command language interpreted by AdaControl.

A control command is a kind of command that describes a check to be performed. A control
commmand includes a kind (“check”, “search” or “count”, see user’s guide), and a control (rule
name and parameters).

A context is a set of values used by a rule to keep the characteristics associated with a control.
Those values can, but need not necessarily, be the parameters of the control.

1.2 General organization

The AdaControl tool includes several main components. Those that are relevant for writing new
rules are:

• A general framework that provides services that are necessary to write rules. This includes
a special module, Framework.Plugs, where rules are plugged-in;

• A set of utilities providing useful functionalities, but not specific to the writing of rules.
Actually, the utilities packages are shared with other programs from Adalog’s “Semtools”
family of tools.

• The rules themselves.

This clear distinction makes it easy to add new rules. Actually, the framework relieves the
programmer from all the “dirty work”, and adding a new rule requires nothing else than caring
about the rule itself.

Chapter 2: The framework and utilities packages 3

2 The framework and utilities packages

The framework includes the package Framework itself and its public child packages. There
are also some private child packages, but they are of course not relevant to the users of the
framework.

In each package, services (declarations, subprograms) that are relevant for writing rules
appear at the beginning of the package specification. Other services that are used by the rest of
the framework, but not intended to be called from a rule, appear below the following comment
lines:

--

-- Declarations below this line are for the use of the framework

--

This section provides an overview of the services that are made available by the framework
and other utilities packages. It is not the purpose of this section to describe the syntax of every
service provided : please refer to the comments in the specification of each package. Existing
rules are also typical examples of how to use these functionnalities.

2.1 The package Adactl Constants

AdaControl has some fixed size structures that limit the complexity of the programs it can
handle, like for example the maximum numbers of parameters that subprograms can have, the
maximum nesting of loops, etc.

These limits are set as constants in the package Adactl_Constants. These values are large
enough to accomodate any reasonable program, but should you hit one of these limits, you can
safely change them here. No other change is required.

If a rule needs to set a fixed dimension to some tables for example, it should use the constants
defined in this package. If no existing constant is appropriate, add a new one to the package,
don’t define dimensioning constants in the rule itself.

2.2 The package Framework

The package Framework includes general services, needed by most rules. These include:

• The definition of some constants that are used to fix a bound to the number of allowable
constructs. Use these constants to dimension tables for example.

• The notion of location, with associated subprograms. A location is a place within a source
file where some construct happens.

• The notion of rule context. A rule context is some information that a rule associates to
entities. For example, given the following rules:

search Entities (Blah);

Strictly_Forbidden: check entities (Ada.Unchecked_Conversion)

the rule Entities must associate that Blah is the target of a search, and that Ada.Unchecked_
Deallocation is the target of a check with label Strictly_Forbidden.

2.3 The package Framework.Rules Manager

The package Framework.Rules_Manager is used to register and manage rules.

The procedure Register declares the name of the rule and the associated Help, Add_Control,
Command, Prepare, and Finalize procedures.

Note that there is nothing else to do to make a rule known to the system: once it is registered,
it will be recognized on the command line, help command will work, etc.

The procedure Enter is used to let the system know which rule is currently active.

Chapter 2: The framework and utilities packages 4

2.4 The package Framework.Reports

The package Framework.Reports is used to report error or found messages when a rule matches.
It deals automatically with things like rules being temporarily disabled, therefore the rule does
not have to care.

The main service provided by this package is the Report procedure, which come in two
flavors. This is the only allowed way for a rule to report its findings, never use Wide_Text_IO

or any other mean. The specifications of the Report procedures are:

procedure Report (Rule_Id : in Wide_String;

Rule_Label : in Wide_String;

Ctl_Type : in Control_Kinds;

Loc : in Location;

Msg : in Wide_String);

procedure Report (Rule_Id : in Wide_String;

Context : in Root_Context’class;

Loc : in Location;

Msg : in Wide_String;

Count_Only : in Boolean := False);

The first procedure expects the label and type to be given explicitely, while the second one
gets them from a Context object (see comments in the package). If Count_Only is True, the
message is not issued, but simply counted for the statistics. This is useful to avoid redundant
messages in some cases, while keeping the number of detections accurate. See an example of
this in Rules.Pragmas.

Note that there is only one string for the message. Please do not try to “improve” the
presentation by introducing line breaks in the report message: the output of AdaControl should
remain parseable by rather naive tools, therefore it is necessary to ensure that one output line
= one message.

In addition, there is an Uncheckable procedure, with the following profile:

procedure Uncheckable (Rule_Id : in Wide_String;

Risk : in Uncheckable_Consequence;

Loc : in Location;

Msg : in Wide_String);

This procedure is called each time a rule encounters some dynamic construct that prevents
normal checking. The parameter Risk is False_Positive if the consequence of not being able
to analyze the construct would result in wrong error messages, and False_Negative if it would
result in not detecting something that could be an error. It is important to call this procedure
for any non-checkable construct, since it is what allows the rule “Uncheckable” to work.

2.5 The package Framework.Language

The package Framework.Language deals with the command language used to specify controls
used in a rules file. Only the subprograms used to parse parameters are relevant to the writing
of rules.

There is a Parameter_Exists function that returns True if there are parameters left to
parse. The corresponding parameter value can be retrieved with the Get_Integer_Parameter,
Get_String_Parameter, or Get_Entity_Parameter functions. The two former functions return
the parameter as an Integer or Wide_String, respectively. The latter one returns an entity
specification, i.e. a descriptor for something which is expected to be a general specification for
an Ada entity (including overloading information, for example). Such an entity can be used as
a key for a context.

Chapter 2: The framework and utilities packages 5

There is a generic package Flag_Utilities to help manage flags (keywords) parameters
defined by an enumerated type. An instantiation of this package provides a Get_Flag_Parameter
procedure to parse the flags, an Image function to get a string representation of a flag, and a
Help_On_Flags function to print the help message that enumerates all possible flag values.

There is a Get_Modifier to process modifiers (things like “not” or “case sensitive” in front
of a parameter). For more sophisticated modifiers, you can instantiate the generic package
Modifier_Utilities, which works like Flag_Utilities, but also provides the notion of sets
of modifiers.

Note that if you instantiate Flag_Utilities or Modifier_Utilities in a library package (as
will be the case most of the time), you must put a pragma Elaborate (Framework.Language);

on top of the package. Failing to do so will result in circular elaboration problems (pragma
Elaborate_All, as implicitely provided by GNAT, does not work).

2.6 The package Framework.Scope Manager

The package Framework.Scope_Manager provides facilities for rules that need to follow scoping
rules (i.e. which identifiers are visible at a given place). It provides subprograms to query
currently active scopes, and a generic package that allows associating any kind of information
to a scope. Scopes are automatically managed: the information will disappear when the corre-
sponding scope is exited, except for information associated to package specifications that will
be restored when the corresponding body is entered.

The scope manager follows strictly the visibility rules for child units: when entering a public
child unit, the scope from the visible part of the parent is restored, and when entering the private
part of the child, the scope of the private part of the parent is restored. In the case of a private
child, the full scope of the parent is restored upon entering.

See the package specification for more details.

2.7 The package Framework.Plugs

Procedures in the package Framework.Plugs are called during the traversal of the Ada source
code. Unlike the rest of the framework, this package does not provide services to rules, but
instead calls processing procedures defined in the rules packages. Therefore, it is necessary to
plug the corresponding calls in this package. This is described in details in Chapter 4 [Plugging-in
a new rule into the framework], page 13.

2.8 The package Rules

The package Rules is (almost) empty. It’s purpose is to serve as the parent package of all rules.

It simply provides an empty state type, and a null procedure that can be used for instantiating
Traverse_Elementin simple cases.

2.9 The package Utilities

This package provides various general facilities that are not specific to AdaControl. The main
elements provided are:

• User_Message and User_Log. Both procedure output a message, the difference being that
User_Log outputs its message only in verbose mode. User_Message is used to print help
messages. User_Log could be used if some rule wanted to print some extra information
in verbose mode. Note that these procedures should not be used to report the result of a
check or search (use Framework.Reports.Report instead).

• String handling services, see package specification

Chapter 2: The framework and utilities packages 6

• Error management. The Error procedure is not to be called directly, use
Framework.Language.Parameter_Error instead to report errors in user provided
parameters. In most cases, parameters are checked in the Add_Control procedure,
and therefore errors are reported during the parsing of the commands. In some cases,
incorrect parameters are discovered while traversing the code. It is acceptable to
call Framework.Language.Parameter_Error at any time, but be aware that this will
immediately stop all analysis. See the Rules.Unsafe_Paired_Calls for an example of
this.

The Failure procedure is used to report internal failures. It is frequent in ASIS program-
ming to have a big case statement over the various kinds of elements, of which only a few
values are interesting or possible given the context. We strongly encourage to call Failure
in the when others part of the case statement to trap unexpected cases. Note that the
procedure is overloaded with a version that allows to print information about the failing
element.

• Debugging facilities. Several Trace procedures allow you to output a message, possibly
with a boolean value, or the context of an ASIS element or element list. There is also an
Assert procedure that calls Failure if its condition is false; well placed Assert calls are
very helpfull in debugging. Note that traces are output only in debug mode.

• Other facilities for managing the output that are called by the framework, but not useful
for writing rules.

2.10 The package Thick Queries

This package contains high level services that are built on top of Asis queries, and can therefore
be quite useful to the writing of rules. These queries are documented in the specification of the
package.

2.11 The packages Linear Queue and Binary Map

These packages provide simple generic containers that are needed by several rules.

The generic package Linear_Queue can be instantiated with any (non-limited) Component

type, and provides a simple queue of elements. Note that this queue has value semantics:
when a queue is assigned, its content is duplicated. Queues are controlled, and therefore all
internal storage allocations are internally managed. The package Framework.Element_Queue is
an instantiation of Linear_Queue with the type Asis.Element.

The generic package Binary_Map can be instantiated with a Key_Type and a Value_Type,
and associates values of Value_Type to values of the Key_Type. The mapping uses a binary tree;
if you use it to keep user information, it is appropriate to rebalance the tree before starting the
actual processing. See [Prepare], page 10.

See existing rules for examples of using this package.

2.12 The package A4G Bugs

AdaControl is quite demanding on the ASIS implementation, and we found some bugs in ASIS-
for-GNAT during its development. These have been reported to ACT, and are fixed in the
wavefront version of GNAT, or should be fixed very soon.

However, many people do not have access to the wavefront version, or prefer to stay with the
stable version. This package provides replacements for some ASIS subprograms that do not be-
have as expected. Subprograms in this package have specifications identical to the corresponding
ASIS subprograms, and are designed in such a way that there is no harm in using them with a
version of ASIS that does not exhibit the bug. Therefore, it is strongly recommended to use the
subprograms in this package rather than their ASIS equivalent.

Chapter 2: The framework and utilities packages 7

Note that if you run the rules file src/verif.aru on your code, it will spot any use of an
ASIS function for which there is a replacement in A4G_Bugs.

Chapter 3: Writing a new rule 8

3 Writing a new rule

There are two kinds of rules: semantic rules, which operate on Ada elements, and textual rules,
which operate on the source text. In some rare cases, a rule can be of both kinds at the same
time; see the rule “Style” for an example of this. Note that a semantic rule can access the text
of an Ada construct with the facilities provided by the package Asis.Text, this does not require
the rule to be Semantic_Textual.

All rules currently provided follow a common pattern, described below; it is recommended
that new rules do the same, in order to make maintenance easier.

The first thing to do before adding a new rule is to read the source for existing rules, as
they provide good examples of how a rule is implemented. For an example of a simple rule,
see Rules.Entity; for an example of a sophisticated one, see Rules.Unnecessary_Use. For
an example of a textual rule, see Rules.Max_Line_Length. Note that Rules.Entity can be
used as a template for writing new semantic rules, as most rules will follow the same general
structure, just making more elaborated processing of relevant entities.

3.1 General considerations

A rule is implemented as a child package of package Rules. The following sections describe the
structure of the specification and body of a rule package.

It is good practice to use only one string type all over a program, and since ASIS is based
on Wide_String, a rule should not use the type String, but rather use Wide_String instead.

3.2 Specification

The specification of a rule package must contain the following elements:

3.2.1 Rule ID

Rule ID is a constant of type Wide_String. It is the unique rule identifier of a rule. It is
used by the package Framework.Rules_Manager as the key in the rules list to dispatch to the
corresponding registered operation, and as the rule name used by the user on the command line
to parameterize and use the rule. The name of the rule should be all upper-case (to allow for
case-independant recognition).

Ex:

Rule_Id : constant Wide_String := "PRAGMAS";

Note that from a language point of view, this declaration could be in the body of the package;
however, for identification purposes, it is more convenient to put it in the specification.

3.2.2 Process

One (or more) procedure(s) may be necessary to process the rule (collectively named the Process
procedures in this document). These procedures are called from Framework.Plugs at appro-
priate places, and therefore must be declared in the specification of the rule. See Chapter 4
[Plugging-in a new rule into the framework], page 13.

Process procedures of a semantic rule take one parameter of type Asis.Element. Although all
element kinds are equivalent from the point of view of Ada’s type checking, it is recommended to
follow general ASIS practice, and to define the parameter with the ASIS element kind expected
by the procedure.

Process procedures of a textual rule take two parameters: an input line, and the corresponding
location.

Ex:

Chapter 3: Writing a new rule 9

-- Semantic rule:

procedure Process_Pragma (Pragma_Element : in Asis.Pragma_Element);

-- Textual rule:

procedure Process_Line (Line : in Asis.Program_Text;

Loc : in Framework.Location);

3.3 Body

It is a good habit to start the body of a rule by giving a comment explaining the general
principles of the algorithm used, especially if the algorithm is not trivial.

The body must contain a Help, an Add_Control, and a Command procedure. It may also op-
tionnally contain a Prepare and a Finalize procedure. These procedures are call-backs that are
registered to the framework by calling Framework.Rules_Manager.Register in the statements
part of the body. Note that there is a parameter to this procedure that tells whether the rule is
semantic, textual, or both. This procedure has null defaults for the optional subprograms.

3.3.1 Help

Help is a procedure that displays a short help message to the standard output for the rule. It
takes no parameter.

The procedure Help is called when the user specifies a “-h” option for the rule. It must display
a useful message by calling Utilities.User_Message. In order to have a uniform presentation
for all rules, the message must be structured as follows:

• The word “Rule:” followed by the rule ID.

• The word “Parameters:” followed by a description of parameters. Note that if you have a
parameter of an enumerated type, the package Flag_Utilities features a Help_On_Flag

procedure that formats automatically the values.

• A helpful message describing the purpose of the rule.

Ex:

procedure Help is
use Utilities;

begin
User_Message ("Rule: " & Rule_Id);

User_Message ("Parameter(s): pragma name (e.g. Elaborate_Body)");

User_Message ("This rule can be used to check/search for the usage "

& "of a specific pragma.");

end Help;

3.3.2 Add Control

Add_Control is a procedure which is called by the rules parser when it finds a control command
that refers to the corresponding rule. It is passed the corresponding label (an empty string if
there is no label), and the control’s kind (Check, Search or Count). It will typically loop over
the parameters with the various Get_XXX_Parameters from package Rules.Language to process
the parameters.

If for some reason a parameter is not appropriate to the rule, the rule should call
Rules.Language.Parameter_Error with an appropriate message. This procedure will raise
the exception User_Error, and the Add_Control procedure should not handle it; the exception
will be processed by the framework.

Note that Add_Control may be called several times if the same rule is activated with different
parameters in a rules file. If a rule can be specified only once, it is up to the rule to check this
and call Parameter_Error in case it is given more than once.

Chapter 3: Writing a new rule 10

Ex:

procedure Add_Control (Label : in Label;

Ctl_Type : in Control_Kinds) is
begin

while Parameter_Exists loop
-- process parameter

end loop;
end Add_Control;

There is no special requirement on the implementation of the Add procedure. The programmer
is free to interpret the parameters as necessary and do whatever initialisation processing they
imply. Typically, for a rule that searches for the occurrence of an identifier, this procedure would
add the identifier to some internal context table.

3.3.3 Command

Command is a procedure used by the framework to send “commands” to the rule in order to
change its state. It has a parameter of an enumeration type that can take the values Clear,
Suspend, and Resume.

• Clear: Command is called with this value whenever a “clear” command is given. The rule
must reset the rule to the “not used” state, and free any allocated data structure.

• Suspend: Command is called with this value whenever the rule is inhibited. The rule must
preserve its current “used” state, and enter the “not used” state.

• Resume: Command is called with this value whenever the rule is no more inhibited. The rule
must restore its state from the copy saved by the previous Suspend

This procedure is required, since it must at least deal with the Rule_Used flag (see [Process],
page 10). Note that it is guaranteed that Suspend/Resume are properly paired, and that Suspend
is not called on an already suspended rule. Therefore, a simple variable can be used to save the
current state.

Ex:

procedure Command (Action : Framework.Rules_Manager.Rule_Action) is
use Framework.Rules_Manager;

begin
case Action is

when Clear =>

Rule_Used := False;

-- Free internal data structures if necessary

when Suspend =>

Save_Used := Rule_Used;

Rule_Used := False;

when Resume =>

Rule_Used := Save_Used;

end case;
end Command;

3.3.4 Prepare

Prepare is a procedure that performs some initialisations that must be done after all controls
refering to the rule have been parsed, and before processing the units. It is optional (i.e. a null
pointer can be passed for it to the Register procedure, or simply not mentionned since null is
the default).

A typical use of Prepare is to balance the tree from a binary map to improve efficiency.

Chapter 3: Writing a new rule 11

3.3.5 Process

There is no special requirement on the implementation of the Process procedure(s). The pro-
grammer is free to do whatever is necessary to the rule. It is possible to use ASIS query functions,
or any other service deemed appropriate.

It is also possible to have several Process procedures (e.g. if the programmer wants to do
some processing when going down the ASIS tree, and some other processing when going up).

A Process procedure should return immediately if no corresponding Add_Control has ever
been called. In most cases, this is conveniently done by having a Rule_Used global boolean
variable which is set to True in Add_Control, and checked at the beginning of Process. For
efficiency reasons, avoid doing any call to the ASIS library before this check. This means that
if you need objects initialized with such calls, they should be declared in a block after the test,
rather than in the declarative part of the Process procedure.

After this test, the rule should immediately call Rules_Manager.Enter (with the rule name
as the parameter). In case of a problem, this allows the system to report which rule failed.

A special case arises for rules that follow the call graph. Such rules may traverse elements out-
side the current unit, but should avoid analyzing units to which an inhibit all applies (so-called
banned units). The framework features an Is_Banned function that tells if an element should
not be traversed due to it being declared in a banned unit. See Rules.Global_References for
an example of this.

3.3.6 Finalize

Finalize is called at the end of a "Go" command, after all units have been processed. It is
useful for rules that report on global usage of entities, and therefore can report findings only at
the end. It is optionnal (i.e. a null pointer can be passed for it to the Register procedure, or
simply not mentionned since null is the default).

Ex:

procedure Finalize is
begin

-- Report findings

end Finalize;

3.3.7 Package statements

The package body statements part should include a call to Framework.Rules_

Manager.Register in order to register the rule and its associated Help, Add_Control,
Command, and optionally Prepare and Finalize, procedures. Note that the second parameter
of Register tells whether it is a semantic, textual, or semantic textual rule.

Ex:

begin
Framework.Rules_Manager.Register (Rule_Id,

Rules_Manager.Semantic,

Help => Help’Access,

Add_Control => Add_Control’Access,

Command => Command’Access,

Prepare => Prepare’Access);

end Rules.Pragmas;

3.4 Programming rules and tips

Chapter 3: Writing a new rule 12

3.4.1 style

We try to maintain a consistent style in AdaControl, therefore the code you write should match
the style of the rest of the program. Have a look at other rules, and run src/verif.aru on your
code. In addition, please note the following:

• The use clause is allowed, but its scope should be restricted to the innermost declarative
region where it is useful. Use a use clause for ASIS units, and another one for other units.
Sort units alphabetically in the clause.

• The only output of a rule should be by calling Report. Especially, no rule should use
Wide_Text_IO directly.

• If your rule encounters a dynamic construct that prevents normal checking, call
Framework.Reports.Uncheckable to warn the user.

• The framework should be sufficient for all your needs. If you have a special need that you
think cannot be satisfied by the current framework, get in touch with us and we’ll discuss
it.

3.4.2 Things to care about

Each time you want the name of something, remember that the name may be given in selected
notation. In most cases, you should call Thick_Queries.Simple_Name on the result of any
query that returns a name to get rid of the possible selectors. Otherwise, you should inspect
the returned expression to see if its Expression_Kind is A_Selected_Component, and take the
Selector if it is.

When designing a rule, consider the implications of renamings and generics.

If you want to output the Element Image of some element, beware that it will be preceded
by spaces. Do not use Ada.Strings.Wide_Fixed.Trim to eliminate them, since it wont remove
tab characters. Use Utilities.trim_all, which will do the right thing.

3.4.3 Using ASIS efficiently.

Remember that ASIS queries can be costly. Declare local variables (or constants) rather than
evaluating several times the same query.

There are issues with some ASIS queries. The rule whose label is “Avoid Query” in
verif.aru will remind you if you use one of these queries.

Asis.Definitions.Subtype Mark
There might be confusion with Asis.Subtype_Mark; moreover, you normally want
to get rid of selected components (see above). Use Thick_Queries.Subtype_

Simple_Name instead.

Asis.Definitions.Corresponding Root Type
This query return a Nil_Element if any type in the derivation chain is a ’Base

attribute (to be honnest, versions of ASIS before the latest 5.05 will loop indefinitely
in this case). Use Thick_Queries.Corresponding_Root_Type_Name instead, and
consider what you want to do if there is a ’Base in the derivation chain.

Asis.Definitions.Corresponding Parent Subtype
This query suffers from the same problem as Corresponding_Root_Type. Don’t
use it, rather take theSubtype_Simple_name of the Parent_Subtype_Indication,
and do your own analysis, depending on whether the returned Expression_Kind is
An_Attribute_Reference or not.

Chapter 4: Plugging-in a new rule into the framework 13

4 Plugging-in a new rule into the framework

4.1 Normal case

Adding a new rule to the tool requires only simple modifications to the package
Framework.Plugs.

The package Framework.Plugs contains several procedures that are called during the traver-
sal of the code under the following circumstances:

• Enter_Unit: Called when entering a compilation unit, before any other processing.

• Exit_Unit: Called when leaving a compilation unit, after any other processing.

• Enter_Scope: Called when entering a new scope (i.e. a construct that can contain decla-
rations).

• Exit_Scope: Called when leaving a scope.

• Pre_Procedure: Called when entering a syntax node (this is like the usual Pre_Procedure
used in the instantiation of ASIS.Iterator.Traverse_Element, except that there is no
State_Information and no Control).

• Post_Procedure: Called when leaving a syntax node.

• True_Identifier: Called when entering an An_Identifier, An_Operator_Symbol, or An_
Enumeration_Literal node that corresponds to a real identifier, i.e. not to a pragma
name or other forms of irrelevant names. This avoids special cases in rules dealing with
identifiers.*

• Text_Analysis: Called on every source line of the code.

These procedures have the usual "big case" structure of an ASIS application (i.e. a first level
case statement on Element_Kind, with each case alternative containing other case statements
to further refine the kind of node that is being dealt with).

The following modifications must be done to the body of this package:

1. Add a with clause naming the rule package:

Ex:

with Rules.Pragmas;

2. Add calls to the rule’s Process procedure(s) at the appropriate place(s) in the body of the
provided procedures. For textual rules, Text_Analysis is the only appropriate place.

Ex:

procedure Pre_Procedure (Element : in Asis.Element) is

use Asis;

use Asis.Elements;

begin
case Element_Kind (Element) is

when A_Pragma =>

Rules.Pragmas.Process_Pragma (Element);

...

end Pre_Procedure;

Many alternatives of the big case statement cover a number of values. It may happen that
a new rule requires calling its Process procedure for some, but not all of these values. In this
case, the case alternative must be split. This is not a problem, but do not forget to duplicate
the statements from the original alternative before adding the new calls, to make sure that the
split does not break existing rules.

Chapter 4: Plugging-in a new rule into the framework 14

It is always possible to plug a Process procedure in Pre_Procedure or in Post_Procedure.
However, some “natural” places for plugging rules correspond to many branches of the big
case statement. For example, there are many places where you enter a scope. That’s why the
package Framework.Plugs includes other procedures that are called in “interesting” contexts.
If appropriate, it is better practice to plug calls to Process procedures here, rather than all over
the place in various alternatives of the big case statement.

4.2 Specific rules

In some cases, you may want to keep your rules separate from the general purpose ones. This
may happen if you have developped some very specific rules that take the structure of your
project into account, and hence would not be of interest to anybody else. Or it may be that
your local lawyer does not allow you to publish your rules as free software.

This should not prevent you from using AdaControl. Just write the rules as usual, but instead
of plugging them in Framework.Plugs, use the package Framework.Specific_Plugs instead.
This package has subprograms identical to those described above for plugging-in rules, and they
are called in the same contexts. But it is guaranteed that no rule from the public release of
AdaControl will ever be plugged-in into this package. This way, you can keep your rules separate
from the public ones, and you can upgrade to a new version of AdaControl without needing to
merge the modifications for your rules.

If you have specific rules plugged into Framework.Specific_Plugs, change the constant
Specific_Version in the specification of the package to something that identifies the specific
version (like your company’s name for example). This way, the version number of AdaControl
will show that it is a specific version.

4.3 User documentation

Of course, you should update the user’s guide with the information about your rules. This
guide is written in Texinfo, see http://www.gnu.org/software/texinfo/. Note however that
you don’t need to understand all the possibilities of Texinfo to update the manual; look at
the description of other rules, the few commands you need will be quite straightforward to
understand.

http://www.gnu.org/software/texinfo/

Chapter 5: Testing and debugging a rule 15

5 Testing and debugging a rule

5.1 Testing

Once the rule is written, you will test it. Of course, you’ll first write a small test case to make
sure that it works as expected. But that’s not enough.

Our experience with existing rules has shown that getting the rule 90% right is quite easy,
but the last 10% can be tricky. Ada offers constructs that you often didn’t think about when
writing the rule; for example, if you are expecting a name at some place, did you take care of
selected names (we got trapped by this one several times)? Therefore, it is extremely important
that you check your rule against as much code as you can, the minimum being the code of
AdaControl itself.

Note that if your rule encountered some uncheckable cases, you should add a child for your
rule to the test t_uncheckable, and also modify the t_uncheckable.aru file accordingly. Look
at how it is done currently, and do the same.

5.2 Debugging aids

As mentionned above, it is often the case when writing a new rule, as well as with any kind of
ASIS programming, that one comes across unexpected contexts. This is due to the rich features
of Ada, but it is sometimes difficult to understand what is happenning.

The framework provides some facilities that help in debugging. Don’t hesitate to use the
Trace and Assert utilities. See Section 2.9 [The package Utilities], page 5. Note that the Trace
procedures may be given an element (or an element list) whose basic characteritics are printed.
If the With_Source parameter is True, the source correponding to the element is also printed.

In addition, a small stand-alone utility called ptree is provided. It prints the logical nesting
of ASIS elements for a unit. The syntax of Ptree is:

ptree [-sS] [-p <project_file>] <unit>[:] -- <ASIS_Options>

 ::= <line_number>

| [<first_line>]-[<last_line>]

| <line_number>:<column_number>

If the “-s” option is given, ptree processes the specification of the unit, otherwise it processes
the body. If the “-S” option is given, the span of each element is also printed. The “-p” option
has the same meaning as in AdaControl itself. ASIS options can be passed, like for AdaControl,
after a “--” (but -FS is the default).

The <unit> is given either as an Ada unit, or as a file name, provided the extension is “.ads”
or “.adb” (as in AdaControl). If a span is mentionned behind the unit name, only the constructs
that cover the indicated span are output. The syntax of the span is the same used by pfni. This
is useful if you are interested in just one particular structure in a big unit.

If you come across a situation where you don’t understand the logical nesting of elements,
try to reduce it to a very simple example, then run ptree on it. It can be quite instructive!

Of course, a more elaborated, but less convenient solution is to use Asistant. Please refer to
your ASIS documentation to learn how to use Asistant.

Finally, if you come to suspect that you get a strange result from an ASIS provided operation,
check whether there is an equivalent operation in the package A4G_Bugs, and if yes, use it instead.
See Section 2.12 [The package A4G Bugs], page 6.

Chapter 5: Testing and debugging a rule 16

5.3 Integrating the test in the test suite

When your rule has been carefully tested and is ready for integration, run the rule file
src/verif.aru on every unit that you have written or changed. This will control that you
match the programming rules for AdaControl. There can be some “found” messages (try to
minimize them if possible), but there should be no “Error” message. Then, the last thing you
have to do is to write a test for non-regression verification purpose. Don’t forget to include
examples of the tricky cases in the test.

Go to the test directory. You’ll notice that all test programs have a name of the form
t_name.adb (or in some rare cases, ts_name.adb). The name is the rule name. You’ll notice
also that some units have a name like tfw_name.adb; these are tests for the framework, you
should normally ignore them. Name your test file according to this convention, normally using
t_, unless the test requires some weird parameters that prevent it from being run normally, in
which case it should use ts_ (“s” stands for special). It is OK for your test to have child units
(whose names will be dictated by the Gnat naming convention). If your test requires other units,
name them like x_name or x_name_complement. Then, go to the test/conf directory, and put
your rule file under the name t_name.aru (with the same name of course).

Go back to the test directory, and run test.sh. All tests should report PASSED, except
the tfw_help and tfw_check tests. Your test will not be reported, because its expected output
is not yet in the directory test/ref; test tfw_help will report FAILED because this test prints
all help messages, and that the help message for your rule has been added; test tfw_check will
report FAILED because there is now one extra message (from the extra rule file) saying “No
error found”.

Check that the result of your test is OK (in the file test/res/t_name.txt), and copy this
file to the directory test/ref/. Do the following command:

diff test/ref/tfw_help.txt test/res/tfw_help.txt

and check that the only difference is the addition of the help message from your rule.

Do the following command:

diff test/ref/tfw_check.txt test/res/tfw_check.txt

and check that the only difference is the addition of one “No error found” message.

Then copy test/res/tfw_help.txt and test/res/tfw_check.txt to the directory
test/ref/. Run test.sh again: it should print PASSED for all tests, including yours. Pay
special attention to the last test, called tfw_stress. This test runs all rules against all test
units. If it fails, the file res/tfw_stress.txt contains the whole listing of the run (with -dv

options), so you’ll find all the context of the problem.

In case of problems, note that options can be passed to test.sh; check the comments at the
top of the file for details.

When everything is OK, all you have to do is send your modifications (including the tests)
to rosen@adalog.fr, for inclusion in the next release of AdaControl!

mailto::rosen@adalog.fr

	General
	vocabulary
	General organization

	The framework and utilities packages
	The package Adactl_Constants
	The package Framework
	The package Framework.Rules_Manager
	The package Framework.Reports
	The package Framework.Language
	The package Framework.Scope_Manager
	The package Framework.Plugs
	The package Rules
	The package Utilities
	The package Thick_Queries
	The packages Linear_Queue and Binary_Map
	The package A4G_Bugs

	Writing a new rule
	General considerations
	Specification
	Rule_ID
	Process

	Body
	Help
	Add_Control
	Command
	Prepare
	Process
	Finalize
	Package statements

	Programming rules and tips
	style
	Things to care about
	Using ASIS efficiently.

	Plugging-in a new rule into the framework
	Normal case
	Specific rules
	User documentation

	Testing and debugging a rule
	Testing
	Debugging aids
	Integrating the test in the test suite

