How to Build Csound 6 and CsoundQt on Windows

Michael Gogins
michael.gogins@gmail.com
12 November 2015

Introduction
This document provides up to date instructions for building Csound and associated programs that go into the Windows installer for Csound on Windows.

This document should be updated in reasonable detail with each release of Csound for Windows, and pushed to Git head.

Csound uses Cmake for building, and uses an Inno Setup Compiler script
 to create the Windows installer, which attempts to bundle together with Csound all generally useful plugin opcodes, language interfaces, and the CsoundQt and NW.js front ends.

Downloads, installations, and tasks are listed more or less in the order they should be performed.

In the following, Updated means that the tool or component was updated to the latest good version at that date; Checked means that the tool or component was checked at that date but did not need to be updated as it was still at the latest good version; and Downloaded means that the tool or component was downloaded at that date but for some reason not built or installed.\

Please note, Cabbage is no longer included in the Windows installer at the request of its author, due to library incompatibility problems.
Filesystem
The conceit of these instructions is that Csound is built in a standard Linux environment (which is simulated using MSys), using the standard GNU compiler (which is MinGW). To assist us in this delusion:

· Toolchain binaries must go in the system path: either /usr/bin or /usr/local/bin for binaries that are designed for MinGW or MSys, or the usual Program Files directories for regular Windows programs. It doesn't really matter where the tool executables actually go, as long as they are in the system PATH environment variable. So they can go where their Windows installers by default puts them.

· Third party software that we simply install can go /usr/opt or else where their Windows installers by default puts them.

· For third party software that we build, we install sources into /usr/local/src.

· If there is an install target, we make the install targets which should, normally, end up in the more or less standard /usr/local/bin, /usr/local/lib, and /usr/local/include.

· If there is no install target, we leave the third party software where it was built.
Note: /usr/local in this document is relative to the MSys directory and would actually be something like C:\msys\local.

Code Generation
Csound for Windows is built for the 32 bit CPU architecture (this will soon be changed to 64 bit CPU architecture!). Code is built optimized for release but also including debugging information. Code generation for all builds must be for release versions of all runtime libraries and all third party libraries.
Not only all components of Csound and CsoundAC, but also all third-party libraries that Csound links with dynamically – including FLTK, PortAudio, and FluidSynth – must be built with code generated for propagating exceptions across image boundaries (dwarf2), and using the Posix threading model.
However, CsoundQt is an exception, and is built with the Qt SDK for Microsoft C++, assuming Microsoft Visual Studio has been installed. That is because it includes the Chromium Embedded Framework which is best used as a prebuilt library, itself built with MSVC.
In general, at least the following compiler options should be used for building all Csound related code:
For Cmake, set build type to RelWithDebInfo.
C Options
-g -O2 -march=nocona -DNDEBUG -I/usr/local/include
C++ Options
-g -O2 -std=gnu++11 -march=nocona -DNDEBUG -I/usr/local/include
Prefix

If the build tool permits configuration an installation prefix, set it to /usr/local.

Toolchain

MinGW Compiler with Qt SDK
Updated 16 October 2015. All C++ binaries that are packaged with Csound must be built with the same C++ ABI. In practice, this means building everything with the same compiler. The following will give you a functional build of the 32-bit MinGW C++ compiler plus a prebuilt version of the complete Qt SDK version 5.5.1: http://download.qt.io/official_releases/qt/5.5/5.5.1/qt-opensource-windows-x86-mingw492-5.5.1.exe.
Android Studio
Updated 14 October 2015. Csound for Android and its dependencies must be built using Google's Android Studio, Android SDK, and Android Native Development Kit. All of these components may be installed by downloading Android Studio and using it to install the other components. Download Android Studio from http://developer.android.com/develop/index.html. Update all the components required for your Android target, including the NDK and system image, as well as the Android support library.

Boost
Updated 17 October 2015. Parts of boost are required by CsoundAC.

Install boost source code from http://sourceforge.net/projects/boost/files/boost/1.59.0/boost_1_59_0.7z/download.

In a Windows command shell (NOT the MSys shell), change to the boost source directory, ensure that MinGW's gcc is in the PATH, and build boost:

bootstrap.bat gcc

b2.exe toolset=gcc
In your build environment, set an environment variable BOOST_ROOT that points to the Boost directory.

Then, test that Cmake can find boost with:
cmake --find-package -DNAME=Boost -DCOMPILER_ID=GNU -DLANGUAGE=CXX -DMODE=EXIST
If that works, then Cmake should be able to find boost when configuring for Csound.

CMake
Updated 16 October 2015. Csound itself is built using CMake.

Install CMake from http://www.cmake.org/.

You should export some environment variables to help Cmake find things in the MSys shell:

export BOOST_ROOT=/d/msys/local/src/boost_1_55_0

export CMAKE_INCLUDE_PATH=/d/meys/local/include

export CMAKE_LIBRARY_PATH-/d/msys/local/lib

CUnit
Updated 23 October 2015. CUnit is used to run unit tests for Csound.

Install CUnit source code from http://cunit.sourceforge.net/ in /usr/local/src. Configure with ./bootstrap.

Make with make.

Install with make install.

DocBook
Updated 26 July 2013. DocBook is used to generate the Csound Reference Manual from XML source files.
Install the current Windows build of xsltproc and libxml2 from http://www.zlatkovic.com/libxml.en.html into /usr/local.

Install the current http://www.oasis-open.org/docbook/xml/4.5/docbook-xml-4.5.zip DocBook XML DTDs. Copy this tree to one directory above the Csound manual directory.
Install the current DocBook XSL stylesheets from http://sourceforge.net/project/downloading.php?group_id=21935&filename=docbook-xsl-1.76.1.zip into /usr/local/opt.

Dot
Updated 18 October 2015. Install ATT Graphviz from http://www.graphviz.org
Doxygen
Updated 17 October 2015. Doxygen is used to generate the Csound API and CsoundAC API documentation from comments in the source code.

Install the current version of Doxygen from http://www.stack.nl/~dimitri/doxyge

 HYPERLINK "http://www.stack.nl/~dimitri/doxygen"
n.

Git
Updated 20 October 2016. Csound 6 source code is maintained in a Git repository at http://sourceforge.net/p/csound/csound6-git/ci/29e5d7338d30a86dae4f2eed20f31d38dd73caff/tree/.

Install Git from http://git-scm.com/download/win.

GTK
Updated 26 July 2013. Fluidsynth and perhaps some other third party packages require some GTK and GNU libraries not supplied with Msys.

Download the all-in-one GTK+ stack from http://www.gtk.org/download/index.php. Unzip it somewhere. Select all directories (bin, include, and the rest) and copy them into /msys/local.

Java SDK
Updated 8 April 2015. The Java SDK is used for generating Java bindings to the Csound API and CsoundAC. Some examples of Java programs using Csound also require the SDK.

Java is also used to build Csound apps for iOS and Android.

Install the Java SE SDK from http://www.oracle.com/technetwork/java/javase/downloads/index.html.

Microsoft Visual Studio Community Edition
Updated 15 October 2015. CsoundQt must be built with the Microsoft C++ compiler, included in Visual Studio Community edition, which can be downloaded for free from https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx.
MSys
Checked 17 October 2015. In addition to the compiler, building Csound and its dependencies requires some other tools. Install MSys from http://sourceforge.net/projects/mingwbuilds/files/external-binary-packages/msys%2B7za%2Bwget%2Bsvn%2Bgit%2Bmercurial%2Bcvs-rev13.7z/download. This includes bison, flex, autotools and some other goodies.

Edit the MSys etc/fstab file to map the MinGW directory to /mingw.
Python
Updated 16 October 2015. The Csound API has a Python interface, and some Csound examples use Python.

Install Python 2.7.9 from http://www.python.org/. Please note, later versions of Python 2.7 do not work because of a bug in version detection.

Create a MinGW import library for Python in the Python libs directory by running:

gendef c:/Windows/system32/python27.dll

dlltool --input-def python27.def --dllname python27 --output-lib libpython27.a
Please note, this must be done every time the version of Python or the version of the MinGW compiler changes.

Qt SDK for Microsoft C++
Updated 17 October 2015. The 32 bit Qt SDK for use with the Microsoft compiler can be obtained from an online installer downloaded from http://www.qt.io/download-open-source/#section-2.
SCons
Updated 17 October 2015. SCons (Software Construction) is a build system that is particularly easy to use. It is used here to make custom builds of some third-party software that lacks a Windows build system, or has a Windows build system that lacks features Csound needs..

Install SCons for Windows from http://www.scons.org/.

SWIG
Updated 16 October 2015. SWIG is used for automatically generating the bindings to the Csound API and to CsoundAC for the Python, Java, and Lua programming languages.

Install SwigWin from http://www.swig.org/download.html.

Third Party Packages
The most recent versions of all tools and third-party packages that are in general use should be used for Csound.
Sometimes this is packaged as a released version, sometimes it is packaged as a beta version, sometimes it is always built from sources. If in doubt, search the World Wide Web or check mailing lists for the software.
If the library does not come pre-built for Windows or with a functional build system for MSys/MinGW, create a CMake file for the library.
Chromium Embedded Framework
Updated 25 October 2015. CEF is embedded in CsoundQt to support Web pages integrated with Csound pieces.

Download the prebuilt libraries and headers from https://cefbuilds.com/, choosing the most recent non-development branch.

Build the C++ wrapper library and examples for CEF using Cmake according to the instructions in CmakeLists.txt using Microsoft Visual Studio for 32 bit CPU architecture (x86), release version.

You must use the same version of Visual C++ that was used to build the Qt SDK, and you must rebuild the wrapper library with the /MD compiler option instead of the default /MT.

Eigen
Updated 15 October 2015. Eigen is a C++ library for matrix arithmetic and linear algebra, used by CsoundAC.

Install Eigen source code from http://eigen.tuxfamily.org/index.php?title=Main_Page in /usr/local/include.

This is a header file-only library and does not need to be built or installed.

FLTK
Updated 16 October 2015. FLTK is used by the FLTK widgets opcodes.

Install the latest FLTK 1.3 source code from http://www.fltk.org/software.php?VERSION=1.3.3 into /usr/local/src.

Configure with cmake-gui cmake, setting CMAKE_INSTALL_PREFIX to D:/msys/local. Set CMAKE_BUILD_TYPE to RelWithDebInfo. Add -march=nocona to CFLAGS.
Make with make.

Install with make install.

Fluidsynth
Updated 17 October 2015. FluidSynth is used by the fluid opcodes to provide an all-in-one sampled synthesis solution for Csound.

Install FluidSynth source code from http://sourceforge.net/projects/fluidsynth/ in /usr/local/src.

Csound does not require any of FluidSynth's internal audio or soundfile drivers. Configure with ./configure --disable-portaudio-support.
Make with make CFLAGS=-DDEFAULT_SOUNDFONT='\"c:/soundfonts/default.sf2\"'.

Install with make install.
gmm++
Updated 16 October 2015. The linear algebra opcodes use gmm++ to implement efficient matrix arithmetic and some matrix decompositions. Yes, Csound can do eigenvalue decompositions!

Download the gmm++ standalone source code from http://download.gna.org/getfem/html/homepage/download.html.

This is a header file only library. Install the gmm-5.n/include/gmm directory into /usr/local/include.

LaTeX
Checked 18 October 2015. LaTeX is used for typesetting the Csound and Csound AC tutorials that are included in the Windows release. Install TeX Live from https://www.tug.org/texlive/
LuaJIT
Updated 23 October 2015. The Csound API has a Lua interface, and the Lua opcodes require LuaJIT in particular, which is bundled with the Csound Windows distribution.

Install LuaJIT source code from http://luajit.org/ in /usr/src.

Build LuaJIT with make.

Install with make install.

libsndfile
Checked 15 October 2015. This is required by Csound for reading and writing soundfiles. It is a pre-built library.

Install libsndfile from http://www.mega-nerd.com/libsndfile/ in /usr/opt.

MusicXML
Updated 23 October 2015. MusicXML is used by the CppSound class in the Csound API to import MusicXML files.

Install the MusicXML source code in /usr/local with git clone http://code.google.com/p/libmusicxml.

Configure with cmake-gui cmake, setting CMAKE_INSTALL_PREFIX to D:/msys64/mingw64. Set CMAKE_BUILD_TYPE to RelWithDebInfo. Add -march=nocona to CFLAGS.
Make with make in the cmake directory.

Install with make install in the cmake directory.

OpenSoundControl
Updated 23 October 2015. Csound uses the OpenSoundControl protocol in the OSC opcodes for low-latency network communications to and from Csound.

Update liblo tag 0.26 from the tarball at (not SVN!).

First, configure with ./configure –prefix=/msys/local --enable-static --disable-shared.

Make with make.

Install with make install.

PortAudio
Updated 19 October 2015. Install PortAudio source code from http://www.portaudio.com/usingsvn.html into /usr/local/src.

Copy the dsound.h file from the STK src/include directory into the MinGW include directory.

Execute autoreconf -if to regenerate all the autotools files.

Configure with ./configure -–with-winapi=wmme,directx,asio -–with-asiodir=/usr/local/src/asiosdk2 –with-gnu-ld=yes –enable-static –disable-shared.

Make with make. This makes static libraries, but not a regular dynamic link library.

Install with make install.

PortMidi
Updated 24 October 2014. Csound can use the PortMidi library for MIDI input and output.

Install the PortMedia source code from http://portmedia.sourceforge.net.
Configure with cmake-gui.
Make with make.

There is no install target for make, set locations in Csound's Cmake build.
Run the test programs to ensure that the build works.

PortSMF
Updated 24 October 2015. PortSMF is used by CsoundAC for importing and exporting standard MIDI files (format 1).

Install the PortMedia source code from http://portmedia.sourceforge.net.
Configure with ./configure.

Make with make.

Install with make install.

It is still possible to unset xxx. In that case, the PortSMF source code has been incorporated into the Csound 6 Git repository. From time to time, replace the Csound 6 sources with current PortSMF sources from http://portmedia.sourceforge.net/.

Pure Data
Checked 23 October 2015. Install Pure Data source code using Git from git://pure-data.git.sourceforge.net/gitroot/pure-data/pure-data into usr/local/src.

PNG and LIBZ
Updated 23 October 2015.
The LIBZ compression library is used by PNG. To enable Cmake to find the library, it is necessary to build it from sources and install it. Follow the instructions in the source directory.

The PNG library is used by the image opcodes. To enable Cmake to find PNG, it is necessary to build it from sources and install it.

Install the latest release sources from http://sourceforge.net/projects/libpng/?source=navbar in /usr/local/src.
Configure with ./configure.

Build with make.

Install with make install.

Pthreads
Updated 23 October 2015. Download the Pthreads for Windows variant from https://www.sourceware.org/pthreads-win32/, install it in /usr/opt, and configure it in Csound's Cmake build.

Secret Rabbit Code
Updated 23 October 2015. Csound can use this for sample rate conversions.

Download from http://www.mega-nerd.com/SRC/download.html and copy to /usr/local/src.

Configure with ./configure.

Make with make.

Install with make install.
Synthesis Toolkit in C++ (STK)
Updated 23 October 2015. Install the STK source code from https://ccrma.stanford.edu/software/stk/ in /usr/local/src.

Configure with ./configure RAWWAVE_PATH=. --enable-static –-disable-shared

Make with make (not mingw32-make).

Install with make install.

Steinberg Proprietary SDKs
Updated 16 November 2014. Steinberg's VST SDK is used by CsoundVST and the vst4cs opcodes, the VSTModuleArchitectureSDK is used for the ScoreGenerator VST plugin that is part of CsoundAC, and the ASIO SDK is used by the PortAudio library that Csound uses for real-time audio input and output.

Install the VST SDK 2.4 from http://www.steinberg.net/en/company/3rd_party_developer.html in /usr/local/src/Steinberg.

Install the ASIO SDK version 2.3 in /usr/local/src/asiosdk2
Please note, these SDKs are proprietary software and you must agree to Steinberg's license terms for use.
Windows SDK

The Windows SDK for Windows 8 contains header files and libraries that used to belong to the DirectX SDK, and that are used by some third-party dependencies of Csound, such as PortAudio, which we have to build.

Install the Windows SDK from http://msdn.microsoft.com/en-us/windows/desktop/hh852363.aspx. Currently, this does not include Visual Studio, but that is OK.

Building Csound 6

Create and/or update a shell script to set up all environment variables and paths for building Csound and for running Csound from and in the build environment. This is an example of such a script (6env):

#!/bin/sh

echo "Configure for development..."

export PATH=${PATH}:/c/Program_Files_x86/SciTE

export PATH=${PATH}:/c/Program_Files_x86/Git/bin

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/bin

export PATH=${PATH}:/c/Program_Files_x86/swigwin-2.0.10

export PATH=${PATH}:/c/Python27

echo "Configure for Android/ARM, armeabi-v7a (ARMv7 VFP), Android 2.3.3+///"

export SDK=/d/Android/adt-bundle-windows-x86-20130514/sdk

export NDK=/d/Android/android-ndk-r8e

export ANDROID_NDK_ROOT=$NDK

export CSOUND_HOME=/c/Users/new/csound-csound6-git

export NDK_MODULE_PATH=${CSOUND_HOME}/android/pluginlibs

export PATH=${PATH}:$NDK_MODULE_PATH

export NDKABI=9

export NDKVER=$NDK/toolchains/arm-linux-androideabi-4.7

export NDKP=$NDKVER/prebuilt/windows/bin/arm-linux-androideabi-

export NDKF="--sysroot $NDK/platforms/android-$NDKABI/arch-arm"

export NDKARCH="-march=armv7-a -mfloat-abi=softfp -Wl,--fix-cortex-a8"

echo "Configure shared libraries and programs needed to run Csound..."

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/opt/Mega-Nerd/libsndfile/bin

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/portaudio

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/portmidi

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/fluidsynth/src/.libs

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/libmusicxml-3.00-src/cmake

export PATH=${PATH}:/c/mingw32-4.7.2/msys/1.0/local/src/luajit-2.0/src

export PATH=${PATH}:/c/Program_Files/Modartt/Pianoteq\ 4

export PATH=${PATH}:/c/Program_Files/BWF_MetaEdit_CLI_Windows_x64

export PATH=${PATH}:/c/Program_Files_x86/sox-14-4-1

export PATH=${PATH}:/c/Program_Files_x86/Audacity

export PATH=${PATH}:/c/Program_Files_x86/Lame\ For\ Audacity

export PATH=/c/Users/new/csound-csound6-git:${PATH}

echo "Configure environment variables needed to run Csound..."

export OPCODE6DIR64=/c/Users/new/csound-csound6-git

export RAWWAVE_PATH=/c/mingw32-4.7.2/msys/1.0/local/src/stk-4.4.4/rawwaves

export PYTHONPATH=/c/Users/new/csound-csound6-git

echo "Configure environment variables needed to run LuaJIT with ufo libraries..."

export LUA_PATH="./?.lua;../?.lua;D:/ufo/?.lua;D:/ufo/ffi/?.lua;D:/ufo/bin/Windows/x86/?.lua;"

export LUA_CPATH="D:/ufo/?;D:/ufo/bin/?;"

export PATH=${PATH}:/d/ufo/bin

echo

In the Msys shell, change to the Csound root directory and execute source 6env to actually create your Csound environment.

Update the Csound source code by executing git pull.

Execute cmake-gui . & to configure your Cmake build system for your environment. When using CMake, generate MSys makefiles, not MinGW makefiles. Pay attention to CMake's error messages. It may be that a variable for an include path or library is missing from the initial state of the cache. Go ahead and add the variable called for by the error message. Configure for double-precision samples.

At this time, there is a serious problem with the Java interface on Windows: the SWIG generated C++ file interfaces/java_interfaceJAVA_wrap.cxx defines long long long, a type that is not supported by MinGW and which breaks the build. Here is the workaround:

At about line 33 of C:\Program_Files_x86\swigwin-3.0.n\Lib\java\javahead.swg, comment out the line typedef long long __int64:

/* Fix for jlong on some versions of gcc on Windows */

#if defined(__GNUC__) && !defined(__INTEL_COMPILER)
 //typedef long long __int64;

#endif
Change to examples/java and execute make to build the Java example jars.
Building the Csound Reference Manual
Build the examples for the manual using a command line such as python csd2docbook.py -a. Build the manual itself using a command line such as mingw32-make html-dist XSL_BASE_PATH=/d/msys/local/opt/docbook-xsl-1.76.1.
Build the API reference by executing cd doc; doxygen Doxyfile; doxygen Doxyfile-CsoundAC.
Building CsoundQt
In the Csound build environment, obtain the CsoundQt source from SourceForge at http://sourceforge.net/projects/qutecsound using git:

git clone git://git.code.sf.net/p/qutecsound/code qutecsound-code

In the CsoundQt source directory create a config.user.pri file containing paths to third party packages customized for your Csound build environment, such as:

CSOUND_INTERFACES_INCLUDE_DIR = C:\\Users\\new\\csound-csound6-git\\interfaces

DEFAULT_CSOUND_API_INCLUDE_DIRS = C:\\Users\\new\\csound-csound6-git\\include C:\\Users\\new\\csound-csound6-git\\interfaces

DEFAULT_CSOUND_LIBRARY_DIRS = "C:\\Users\new\\csound-csound6-git"

DEFAULT_LIBSNDFILE_INCLUDE_DIRS = "C:\\mingw32-4.7.2\\msys\\1.0\\opt\\Mega-Nerd\\libsndfile\\include"

DEFAULT_LIBSNDFILE_LIBRARY_DIRS = "C:\\mingw32-4.7.2\\msys\\1.0\\opt\\Mega-Nerd\\libsndfile\\bin"

build32: DEFAULT_CSOUND_LIBS = csound32.dll

build64: DEFAULT_CSOUND_LIBS = csound64.dll

LIBSNDFILE_LIB = libsndfile-1.dll

DEFAULT_PYTHON_INCLUDE_DIRS = "C:\\Python27\\include"

DEFAULT_PYTHONQT_SRC_DIRS = "$$(PROGRAMFILES)\\PythonQt"

Because it now is built with the Chromium Embedded Framework, CsoundQt must be compiled using Microsoft Visual C++, the same version as used to build CEF, for 32 bit CPU architecture. Therefore, you must first create a Visual C++ import library for Csound with something like this in the Visual C++ command shell:

@echo CREATING MICROSOFT IMPORT LIBRARY FOR CSOUND64.DLL

dumpbin /exports %CSOUND_HOME%\csound64.dll > exports.txt

@echo LIBRARY CSOUND64 >> %CSOUND_HOME%\csound64.def

@echo EXPORTS >> %CSOUND_HOME%\csound64.def

FOR /F "skip=19 tokens=4" %%l in (exports.txt) do @echo %%l >> %CSOUND_HOME%\csound64.def

lib /def:%CSOUND_HOME%\csound64.def /out:%CSOUND_HOME%\csound64.lib /machine:x86

Then run QtCreator, load the qcs project, run qmake, and build the project. It will not run unless all required DLLs are present in the build directory, and in the proper directory layout too, along with the CEF runtime.

Build csound.node

See the README.md in C:\Users\mike\csound-csound6-git\frontends\nwjs.

Run Tests

After building all targets, change to the root of the build directory and run make test, continuing through crashes and exceptions. Then run make csdtests., also continuing through crashes and exceptions. If too many tests fail, you probably need to fix something.

Building the Installer
Build the installer using Inno Setup Compiler from http://www.jrsoftware.org/isinfo.php

 HYPERLINK "http://nsis.sourceforge.net/Main_Page"
 with the NONFREE (VST) stuff.

The deployment of CsoundQt takes special care. The Qt libraries load some DLLs through dynamic linking and other DLLs as plugin modules. There are no helpful error messages or logs. Either the Qt plugins load, or they don't and the application crashes. It seems the only way to get it straight is:

· Use the Dependency Walker utility to identify the dynamically linked Qt DLLs and put them into the Csound bin directory.

· Use the Process Explorer utility to identify the Qt plugins that CsoundQt loads when it is running. These go into specific subdirectories of the Csound bin directory as follows. Having too many Qt libraries apparently is as bad as not having the required ones. Currently the list of Qt libraries is:

mkg@sorabji /c/Program_Files_x86/csound6/bin

$ ls -ll Qt*.dll platforms plugins/*

-rwxr-xr-x 1 mkg Administrators 9527492 Jul 25 23:22 Qt5Core.dll

-rwxr-xr-x 1 mkg Administrators 9678079 Jul 25 23:26 Qt5Gui.dll

-rwxr-xr-x 1 mkg Administrators 783361 Jul 25 23:32 Qt5PrintSupport.dll

-rwxr-xr-x 1 mkg Administrators 12456443 Jul 25 23:31 Qt5Widgets.dll

-rwxr-xr-x 1 mkg Administrators 611324 Jul 25 23:23 Qt5Xml.dll

platforms:

total 2354

-rwxr-xr-x 1 mkg Administrators 2409481 Aug 2 19:27 qwindows.dll

plugins/accessible:

total 605

-rwxr-xr-x 1 mkg Administrators 618749 Aug 2 19:27 qtaccessiblewidgets.dll

plugins/imageformats:

total 2450

-rwxr-xr-x 1 mkg Administrators 131180 Aug 2 19:27 qgif.dll

-rwxr-xr-x 1 mkg Administrators 135293 Aug 2 19:27 qico.dll

-rwxr-xr-x 1 mkg Administrators 409066 Aug 2 19:27 qjpeg.dll

-rwxr-xr-x 1 mkg Administrators 628497 Aug 2 19:27 qmng.dll

-rwxr-xr-x 1 mkg Administrators 132618 Aug 2 19:27 qsvg.dll

-rwxr-xr-x 1 mkg Administrators 197247 Aug 2 19:27 qsvgicon.dll

-rwxr-xr-x 1 mkg Administrators 128440 Aug 2 19:27 qtga.dll

-rwxr-xr-x 1 mkg Administrators 618469 Aug 2 19:27 qtiff.dll

-rwxr-xr-x 1 mkg Administrators 123177 Aug 2 19:27 qwbmp.dll

plugins/printsupport:

total 102

-rwxr-xr-x 1 mkg Administrators 103642 Jul 25 23:34 windowsprintersupport.dll
Build the installer again, this time without the NONFREE stuff.

Perform functional tests below.
Update this document to reflect any changes in procedure or dependencies.

Upload the free software installer to SourceForge and update the release package.

Upload the NONFREE installer to http://www.michael-gogins.com/.

Building for Android

Install Android Studio. Use its SDK Manager to upgrade to recent tools and libraries, including the support libraries.

Currently Csound for Android runs on Android 5 but it no longer runs on Android 4. The log reports that missing srand causes the .so's to fail to load. This appears to be a bug in Android Studio choosing the wrong libraries to install in the apk file.

In the MSys shell, change to the csound/android directory.

Execute ./build-all-mkg.sh clean.

Execute ./build-all-mkg.
Run Android Studio and load the csound/android/CsoundForAndroid/CsoundForAndroid project. You may need to monkey with the .idea files as they may need to be told which modules are really modules.

Invalidate the caches and reload.

Sync with gradle.

Connect your Android 5 or higher device to your computer with a USB cable.

Run the Csound for Android app from Android Studio.

To Do

1. Android

1. Update Android app's built-in user guide (done).

2. Upload.

3. Update FLOSS manual's Android section.

2. CsoundQt

1. Try to get HTML to display immediately upon loading the piece (done).

2. Try passing JavaScript callbacks into CsoundQt.

3. Installer

1. Build installer.

2. Test.

3. Upload.
