
Ant Quick Start Guide for DITA Open Toolkit

2 | OpenTopic | TOC

Contents

Introduction to the DITA Open Toolkit and Ant.. 3
Overview.. 3
About DITA-OT Toolkit Roles..3
What is Ant?...4
What is DITA-OT?...4
When Should I Use DITA-OT?... 5

Writing Your Own Build Files.. 6
Writing Ant Build Files DITA-OT...6
Ant Properties for DITA-OT..7
Generating Documents with Ant..16
About the Java Command Line Interface...18
Generating Documents with Java...18

Debugging DITA-OT Transformations.. 19
Introducing Document Generation...19

Best Practices...21

OpenTopic | Introduction to the DITA Open Toolkit and Ant | 3

Introduction to the DITA Open Toolkit and Ant

Understanding the role of DITA Open Toolkit and Ant for technical writers.

This chapter further describes the role of DITA Open Toolkit, Ant, and when DITA-OT is a logical choice for your
documentation team.

Overview
Introducing the most important authoring tool since FrameMaker.

DITA-based writers gain numerous advantages using this powerful, single-source, document solution. Indeed, I
think of DITA as the Holy Grail of technical documentation, the object for which many a manager has sent me on
long, fruitless searches in the past, only to return with half-hearted recommendations for a combination of tools that
required hours of manual tweaking to reproduce a document in just one alternative format.

Today, I can tell my manager that the Grail has been found, and I can produce a handful of different document output
types simultaneously. This is a breakthrough technology for technical writers. In industry jargon, "single source" has
previously meant writing in FrameMaker, then importing your source into another expensive application to produce
a second output format, typically online help. To gain just a second format from the source often required tedious
hours, sometimes days, massaging the text after it had been "translated" into an online help system. DITA-OT allows
technical writers to produce seven output formats at the same time.

However, several technologies make this magic happen. Motivated, or just curious, writers will want a more
advanced understanding of what makes DITA tick. To do so, you will need to learn how to write Ant build scripts for
the DITA-OT and invoke them from the command line.

• Ant
• DITA Open Toolkit

Hopefully, this guide will motivate you to study DITA-OT further and encourage your publications team to
implement a single-source, DITA-based documentation solution.

About DITA-OT Toolkit Roles
Descriptions of the following user roles for the toolkit: CSS Customizers, Build Scripters, and potentially End Users
of third-party authoring tools.

If you don't know what a build script is, or whether your authoring tool should or does use DITA OpenToolkit,
you may be reading the right document in the in the DITA-OT documentation suite. User Roles are a useful way to
present and approach the documentation, enabling the reader to bypass information that is not relevant to the specific
task she is performing when this document is read. The followige roles are addressed in this guide:

• CSS Stylesheet Customizers
• Ant Build Scripters
• Online Help developers

Many readers may be unaware of the toolkit's presence, but it is the "engine" of whatever writing tool you use to
write and maintain XML-based, DITA-compliant content. CSS Stylesheet Customizers read this guide when they
are unable to specify custom stylesheets, or .css files from their third-party authoring application. Build Scripters
consult this guide when the toolkit is unable to process an Ant build script. The Quick Start Guide features an up-to-
date tables of all supported parameters for both Ant and the Java command line interface, useful information if your
documentation is generated automatically as part of an automated daily build. As my first manager warned me long,
long ago, 'The howling hordes descend when the build breaks'.

4 | OpenTopic | Introduction to the DITA Open Toolkit and Ant

If you need to fix a broken build, time is of the essence. If you know how to edit CSS stylesheessor run Ant build
scripts, then read on. If you don't recognize CSS and Ant, you're likely an End User and you should refer to your
third-party documentation. If like the author, you also enjoy hacking with your tools this is definitely the guide for
you. Although the Quick StartGguide currently provides more information for build scripters than css customizers,
revisions will describe the use of XSLT and the new plugin architecture for this audience. When your third-party
authoring tool breaks down, this guide is the mechanic's manual you didn't know you had. If you're unafraid of a
command line and willing to "get your hands dirty" under the hood, an up-to-date, and maintained table of Ant build
properties can be the difference between a broken build and a bad day or a gently purring build in a background
chron chron job that never demands attention. If the build has already broken by the time you read this, your may be
the "build hero" who magically "fixes" the build which no one cares about, except that it is usually only then that the
fire-breathing IT dragon returns to it's cave and everyone can relax again until the next "emergency".

If you use the Eclipse plugin architecture to distribute online help to Eclipse developers, you should start with Create
Eclipse Plugins.

What is Ant?
Learning about the blurred line between code and documentation and why technical writers need to learn Ant.

If your DITA authoring tool uses the Open DITA Toolkit to generate your documents, you're already using Ant.
So, what is Ant, anyway? Ant is a build tool, a program used to compile other programs. If you work as a writer in
the enterprise software industry, you know that software engineers regularly produce several versions of whatever
software they are working on before they release it to the public. Each compilation is called a build. Dozens,
sometimes hundreds, of builds are compiled before the RTM (release to manufacturing) or GA (general acceptance)
build is certified as the official release build. You can often determine the release build of whatever software you are
using by reading the Help->About dialog box. For example, my version of XMetal is 5.5.0.219. This means that build
219 was the official release build for XMetal, version 5.5.

Writers also draft, write, revise, and rewrite their documents many times before releasing a document to the public.
We tend to call these drafts, rather than builds. You probably saved drafts of your documents in a document
repository or CMS, a content management sytem, in the past, but I doubt you thought of your draft, even though it
was versioned by the repository, as a software build that either compiled or failed to compile. A successful document
"build" meant only that a document opened in your authoring tool the next day, not that all the related documents also
opened successfully and "compiled" together to produce a version, albeit incomplete, of the documentation that will
eventually make its way to your readers. Hence, the "build" metaphor did not extend beyond the programming code
in the engineers' cubicles to the documents crafted by the writers.

DITA changes that forever; the build metaphor is as relevant to you as to the engineers. Behind the user interface of
your authoring tool, the DITA Open Toolkit uses Ant to compile a build every time you try to generate your single-
source documents. If you want to customize the way DITA-OT generates your documents, you will need to open the
hood, so to speak, and get your hands dirty with the internals of the Toolkit and Ant.

What is DITA-OT?
What is the DITA Open Toolkit, anyway?

The DITA Open Toolkit is a popular, free, open-source tool used to transform DITA documents and maps into the
output document formats you desire. In fact, most of the proprietary authoring tools use the DITA-OT to transform
DITA documentation projects, so you aren't wasting your time learning about how it works. Many errors are more
quickly fixed if you understand what the toolkit is doing "beneath the hood" of your authoring tool.

DITA-OT uses Ant to generate your documents. The primary ant script is build.xml, which imports several other
build scripts to initialize, validate, and transform your .dita documents.

See Introducing Document Generation on page 19 for more information about how DITA-OT processes
documents.

OpenTopic | Introduction to the DITA Open Toolkit and Ant | 5

When Should I Use DITA-OT?
Determining when DITA OT makes sense for your team.

There a several scenarios where using DITA-OT is the appropriate choice for your documentation team, and
describing them all is beyond the scope of this guide. However, here are three simple criteria where DITA-OT
provides the best solution:

• Your documentation suite contains a lot of content that is reusable for different documents and audiences.
• Your documentation suite contains documentation for developers using the Eclipse IDE.
• Your documentation suite includes both Microsoft HTML Help and PDF-based documents.

DITA-OT is the only publication tool capable of producing both PDF and Eclipse-based documentation from the
same source. Eclipse is the industry-standard IDE for many Java developers, and DITA-OT generates the the content
and plugin file required for this environment. If your developer audience uses Eclipse, you can easily add IDE-
specific online help to your documentation suite.

If your primary audience is end users, rather than software developers and system administrators, you likely need to
provide Microsoft HTML Help for them, in addition to PDF-based documentation. DITA-OT is the only tool that
produces both from the same source files.

6 | OpenTopic | Writing Your Own Build Files

Writing Your Own Build Files

Learning about DITA-specific Ant properties.

Generating documents using Ant from the command line. Understanding which Ant properties must be present in an
Ant build file for the DITA Open Toolkit.

Writing Ant Build Files DITA-OT
Learning how buildfiles tell Ant what and how to compile.

The sample Ant build scripts provided by the DITA-OT may not be adequate to meet the needs of your
documentation project. This topic describes how to customize the default scripts and write your own.

Customize the Default Ant Script

The DITA Open Toolkit contains sample build files for both the DITA-OT and sample documentation. Writers new
to the toolkit use the sample_all.xml Ant build script to create all the sample documents that come with DITA-
OT. The toolkit also contains build scripts for individual ouput types, such as sample_pdf.xml. You can modify
just one or two Ant properties in these scripts for your own documentation.

Here is the Ant project definition from template_pdf.xml

You simply change the values of the following properties to match the values used in your project:

• Project name: The root element in an Ant build file.
• Target name: Must be one of the DITA-OT targets listed in Ant Properties for DITA-OT on page 7

OpenTopic | Writing Your Own Build Files | 7

However, the toolkit's scripts assume that your input files are located in same directory structure used by the DITA-
OT samples.

Write Your Own Ant Script

The default build script may not meet the needs of your project for a range of reasons:

• You want to add additional Ant properties not used in the sample template, such XSL and DTD properties to assist
your debugging efforts.

• Your content files may not have the same directory structure as the samples.
• You want to place the output files in a different directory.

You need to cutomize or write your own build file for these use cases. For example, each target for this guide's build
script uses a separate value for dita.temp.dir to assist debugging for a specific output types.

Here is the beginning of the ant script that produced this document:

Ant Properties for DITA-OT on page 7 contains a short list of the most basic Ant properties used by DITA-OT.
Use these properties to customize your document's build script for your needs.

Ant Properties for DITA-OT
Reference list of DITA-specific Ant properties.

DITA-OT processes your documentation project as an Ant project, which allows several Ant build properties specific
to DITA-OT and your project. These properties can be divided into three categories:

• Properties specific to your documentation project
• Properties specific to the DITA Open Toolkit that you may override
• Properties specific to the DITA Open Toolkit that you should never override

8 | OpenTopic | Writing Your Own Build Files

The following tables describes the first group of properties, those specific to your documentation project. The tables
also indicate the Java command line option corresponding to the property, if available. Each table describes the
properties for one of the following transformation types:

• PDF
• XHTML
• HTMLHelp
• WordRTF
• troff
• docbook
• JavaHelp
• eclipsehelp
• ODT (Open Document format)

Parameters available to all transforms

The following common parameters are available for use by all DITA-OT builds.

Table 1: Common DITA-OT parameters

Project Ant Property Java Option Description

args.debug /debug Specifies that DITA-OT print debugging
information for your project. Allowed values are
"yes" and "no". Default value is "no".

args.draft /draft Indicates whether draft-comment and required-
cleanup elements are included in the generated
file. Corresponds to XSLT parameter DRAFT
in most XSLT modules. Allowed values
are "yes" and "no". Default value is "no". If
${publish.required.cleanup} is not set,
${args.draft} will be used.

Tip: The
${publish.required.cleanup}
property is a legacy property that applies
only to PDF transformations. The
args.draft parameter should be used
instead.

Tip: For PDF output, setting
${args.draft} to "yes" will also
cause the contents of <titlealts> to
appear below the title.

args.figurelink.style NA Specifies how cross references to figures are
styled. Allowed values are "NUMBER" and
"TITLE". NUMBER results in "Figure 5", TITLE
results in the title of the figure. Corresponds to the
XSLT parameter FIGURELINK.

Note: This parameter is available for all
except the PDF transform.

args.grammar.cache /
grammarcache

Specifies whether to use the grammar caching
feature of the XML parser. Allowed values are
"yes" and "no". Default value is "yes".

OpenTopic | Writing Your Own Build Files | 9

Project Ant Property Java Option Description

Note: For most users, this is an important
option that dramatically speeds up
processing time. However, there is a
known problem with using this feature for
documents that use XML Entities. If your
build fails with parser errors about entity
resolution, try setting this parameter to
"no".

args.input /i Typically defines the location of the .ditamap
file for your documentation project. However,
the property can be set to a .dita file, as well.
DITA-OT reads this file to find the .dita files
that comprise the content for the documentation
project.

args.logdir /logdir Defines the location where DITA-OT places log
files for your project.

args.outext /outext Specifies the file extension for HTML files in
your project's output. Corresponds to XHTML
parameter OUTEXT. Default values is ".html".

args.tablelink.style NA Specifies how cross references to tables are styled.
Allowed values are "NUMBER" or "TITLE". The
default is "NUMBER", which produces results
such as "Table 5". TITLE results in the title of
the table. Corresponds to the XSLT parameter
TABLELINK.

Note: This parameter is available for all
except the PDF transform.

basedir /basedir The directory where your project's ant build script
resides. The DITA-OT will look for your .dita files
relative to this directory. DITA-OT's default build
script sets this as an attribute of the project, but
you can also define it as a project property.

dita.ext NA Specifies an extension to use for DITA topics; All
DITA topics will use this single extension in the
temp directory. Corresponds to XSLT parameter
DITAEXT. Default value is ".xml"

dita.input.valfile /filter Defines the location of your project's filter file.
Filter files end with the .ditaval suffix and are
used to filter, include and exclude, content in the
generated document. Alternatively, you can create
multiple versions of your document by creating a
different .ditamap file for each version.

output.dir /outdir The location of the directory to hold output from
your documentation project.

transtype /transtype Defines the output type for a specific Ant target.
Plug-ins may add new values for this option; by
default, the following values are available:

• PDF

10 | OpenTopic | Writing Your Own Build Files

Project Ant Property Java Option Description

• xhtml
• htmlhelp
• eclipsehelp
• eclipsecontent
• odt
• troff
• rtf
• javahelp
• legacypdf
• docbook

validate /validate Specifies whether DITA-OT should validate your
content files. Allowed values are "yes" and "no".
Default value is "yes".

Parameters available for all XHTML based transforms

The following parameters are available for all output types that are based on the XHTML transform type, including:

• XHTML
• HTMLHelp
• JavaHelp
• eclipsehelp

Table 2: XHTML and related parameters

Project Ant Property Java Option Description

args.artlbl /artlbl Adds a label to each image containing
the image's filename. Allowed values are
"yes" and "no". Default is "no".

args.breadcrumbs NA Specifies whether to generate
breadcrumb links. Corresponds to the
XSLT parameter BREADCRUMBS.
Allowed values are "yes" and "no".
Default is "no".

args.copycss /copycss Indicates whether you want to copy your
own .css file to the output directory.

args.css args.css The name of your custom .css file.

args.csspath /csspath The location of your copied .css
file relative to the output directory.
Corresponds to XSLT parameter
CSSPATH.

args.cssroot /cssroot The directory that contains your
custom .css file. DITA-OT will copy the
file from this location.

args.ftr /ftr Specifies the location of a well-formed
XML file containing your custom
running-footer for the document body.
Corresponds to XSLT parameter FTR.

OpenTopic | Writing Your Own Build Files | 11

Project Ant Property Java Option Description

Note: The fragment must be
valid XML, with a single root
element, common practice is to
place all content into <div>.

args.gen.default.meta NA Specifies whether to generate
extra metadata that targets parental
control scanners, meta elements with
name="security" and name="Robots".
Allowed values are "yes" and "no".
Default value is "no". Corresponds to the
XSLT parameter genDefMeta.

args.gen.task.lbl /usetasklabels Specifies whether to generate locale-
based default headings for sections
within task topics. Allowed values are
"YES" and "NO". Default is "NO".
Corresponds to the XSLT parameter
GENERATE-TASK-LABELS. This
parameter is also available for the PDF
transform.

args.hdf /hdf Specifies the location of a well-formed
XML file to be placed in the document
head.

args.hdr /hdr Specifies the location of a well-formed
XML file containing your custom
running-header for the document body.
Corresponds to XSLT parameter HDR.

Note: The fragment must be
valid XML, with a single root
element, common practice is to
place all content into <div>.

args.hide.parent.link NA Specifies whether to hide links to
parent topics in the rendered XHTML.
Corresponds to the XSLT parameter
NOPARENTLINK. Allowed values are
"yes" and "no". Default is "no".

args.indexshow /indexshow Indicates whether indexterm element
should appear in the output. Allowed
values are "yes" and "no". Default is
"no".

args.xhtml.toc.class NA String for a CSS class name attribute
applied to the TOC (x)HTML
output's <body> element. Found in
map2htmltoc.xsl.

args.xhtml.classattr /xhtmlclass Specifies whether to include DITA
class ancestry inside generated XHTML
elements. Allowed values are "no" and
"yes"; the default is "yes" in release
1.5.2 (it was "no" in 1.5 and 1.5.1).
For example, the prereq element in a

12 | OpenTopic | Writing Your Own Build Files

Project Ant Property Java Option Description

task (which is specialized from section)
would generate "class="section
prereq". Corresponds to the XSLT
parameter PRESERVE-DITA-CLASS.

args.xsl /xsl Specifies an XSL file that is used
rather than the default XSL transform,
located in toolkitdir\xsl
\dita2xhtml.xsl. Property must
specify the full path and XSL file name.

generate.copy.outer /generateouter Specifies whether to generate files for
content files that are not located in or
beneath the directory containing your
ditmap file.

onlytopic.in.map /onlytopicinmap Specifies whether files that are linked
to, or referenced with a conref attribute,
should generate output. If set to "yes",
only files that are referenced directly
from the map will generate output files.

outer.control /outercontrol Specifies whether content files are
located in or below the directory
containing your .ditamap file. The
default value is "no." The gen-list-
without-flagging Ant task
generates a harmless warning for content
outside the map directory; you can
suppress these warnings by setting the
outer.control property to "true".

: Microsoft HTML Help Compiler
cannot produce HTMLHelp for
documentation projects that use outer
content. Your content files must reside
in or below the directory containing the
.ditamap file, and the map file cannot
specify ".." at the start of href attributes
for topicref elements.

PDF-specific Ant Properties

The following table describes Ant properties that are specific to the PDF transformation type.

Table 3: PDF parameters

Project Ant Property Java Option Description

args.fo.include.rellinks /
foincluderellinks

Specifies which links to include in the
PDF file. Values are:

• "none" (the default) - no links are
included.

• "all" - all links are included.
• "nofamily" - hard coded links and

reltable-based links are included.

OpenTopic | Writing Your Own Build Files | 13

Project Ant Property Java Option Description

Parent, child, next, and previous links
are not included.

args.fo.output.rel.links /
fooutputrellinks

Note: This parameter
is deprecated in favor of
${args.fo.include.rellinks}.

Specifies whether to show links
in your project's output. Values
are "yes" (include all links) and
"no" (the default, include no links). If
${args.fo.include.rellinks}
is specified, this parameter is ignored.

args.gen.task.lbl /usetasklabels Specifies whether to generate locale-
based default headings for sections
within task topics. Allowed values
are "yes" and "no". Default is "no".
Corresponds to the XSLT parameter
GENERATE-TASK-LABELS. This
parameter is also available for the
XHTML based transforms.

args.xsl.pdf /xslpdf Specifies an XSL file that is used in
place of the default XSL transform at
toolkitdir\demo\fo\xsl\fo
\topic2fo_shell.xsl. You must
specify the full path and XSL file name.

retain.topic.fo /retaintopicfo Specifies whether to leave the generated
FO file for a PDF project.

ODT-specific Ant Properties

The ODT transform, which produces a document using the Open Document Format, is available in the 1.5.2 version
of the DITA-OT.

Table 4: ODT related parameters

Project Ant Property Java Option Description

args.odt.img.embed /odtimgembed Determines whether images are
embedded as binary objects within the
ODT file.

args.odt.include.rellinks/
odtincluderellinks

Specifies which links to include in the
ODT file. Values are:

• "none" (the default) - no links are
included.

• "all" - all links are included.
• "nofamily" - hard coded links and

reltable-based links are included.
Parent, child, next, and previous links
are not included.

14 | OpenTopic | Writing Your Own Build Files

EclipseContent-specific Ant Properties

The "eclipsecontent" transform type produces normalized DITA files, along with Eclipse TOC and project files.

Table 5: EclipseContent properties

Project Ant Property Java Option Description

args.eclipsecontent.toc /
eclipsecontenttoc

Specifies the name of the TOC file for an
Eclipse Content project.

XHTML-specific Ant Properties

Parameters in this section are used by the "xhtml" transtype, but not by other XHTML based transforms.

Table 6: Properties for the "xhtml" transform type

Project Ant Property Java Option Description

args.xhtml.contenttarget NA Specifies the content frame name where
links from TOC are opened.

args.xhtml.toc /xhtmltoc Specifies the name of the entry point for
an XHTML project. The default value is
index.html

EclipseHelp-specific Ant Properties

The following table describes Ant properties that are specific to the EclipseHelp transformation type, which is an
XHTML based output for use with the Eclipse Help System.

Project Ant Property Java Option Description

args.eclipsehelp.toc /eclipsehelptoc Specifies the name of the TOC file.

args.eclipse.country NA Specifies the more specific region
for the language specified with
args.eclipse.language
For example, US, CA and GB
would clarify a value of "en" for
args.eclipse.language.
The content will be moved into the
appropriate directory structure for an
Eclipse fragment.

args.eclipse.language NA Specifies the base language for translated
content, such as "en" for English.
This parameter is a prerequisite
for args.eclipse.country.
The content will be moved into the
appropriate directory structure for an
Eclipse fragment.

args.eclipse.provider /provider Specifies the name of the person or
organization providing an Eclipse Help
project. The default value is DITA.

Tip: The toolkit ignores the
value of this property when

OpenTopic | Writing Your Own Build Files | 15

Project Ant Property Java Option Description

processing an Eclipse Collection
Map, eclipse.dtd.

args.eclipse.version /version Specifies the version number to include
in the output. Default value is 0.0.0.

Tip: The toolkit ignores the
value of this property when
processing an Eclipse Collection
Map, eclipse.dtd.

args.eclipse.symbolic.nameNA Specifies the symbolic name (aka
plugin ID) in the output for an Eclipse
Help project. The @id value from
the DITA map or the Eclipse map
collection (Eclipse help specialization)
is the symbolic name for the plugin
in Eclipse. By default, the value
org.sample.help.doc.

Tip: The toolkit ignores the
value of this property when
processing an Eclipse Collection
Map, eclipse.dtd.

HtmlHelp-specific Ant Properties

The following table describes Ant properties that are specific to the HTML Help compiled help transformation target.

Project Ant Property Java Option Description

args.htmlhelp.includefile/
htmlhelpincludefile

Specifies the name of a file that you want
included in an HTMLHelp project.

JavaHelp-specific Ant Properties

The following table describes Ant properties that are specific to the JavaHelp transformation target.

Project Ant Property Java Option Description

args.javahelp.map /javahelpmap Specifies the name of the ditamap file for
a JavaHelp project.

args.javahelp.toc /javahelptoc Specifies the name of the file containing
the TOC in your JavaHelp output. The
default value is the name of the ditamap
file for your project.

Other Toolkit Ant Properties

The following table describes additional Ant properties specific to the DITA Open Toolkit that you may override.
You should not override a DITA-OT Ant property if it does not appear in this table or one of the tables above.

DITA Ant Property Java Option Description

args.dita.locale /
ditalocale

Specifies the language locale file to
use for sorting index entries. The

16 | OpenTopic | Writing Your Own Build Files

DITA Ant Property Java Option Description

JavaHelp transformation type also uses
this parameter.

clean.temp /cleantemp Specifies whether DITA-OT should
delete the files in the temporary
directory, dita.temp.dir, when
it finishes a build. Allowed values are
"yes" and "no". Default value is "yes".

dita.dir /ditadir The location of your DITA-OT
installation. Also referred to as
toolkit_dir in the sample ant
scripts. Verify that your project's build
script points to the correct location.

dita.extname /ditaext Deprecated. Defines the file extension
for content files in the directory
specified with the dita.temp.dir
property. Allowed values are ".xml"
and ".dita"; Default is ".xml".

dita.preprocess.reloadstylesheetNA Instructs the toolkit to reload the XSL
stylesheets used for transformation.
Default value is false.

Tip: Set the value to true if
you want to use more than
one set of stylesheets to
process a group of topics.
The parameter is also useful
for writers of toolkit build
scripts who experience Java
memory problems during
transformation due to large
Ant projects. Alternatively,
you can adjust the size of your
Java memory heap if setting
dita.preprocess.reloadstylesheet
for this reason.

dita.temp.dir /tempdir Defines the directory where DITA-OT
will create a temporary directory to
place temporary files generated during
the transformation process.

Generating Documents with Ant
How to generate documents from the command line with Ant.

1. Open a command prompt.

2. Change directories to where the DITA-OT is installed on your machine.

3. Enter the following command:
startcmd.bat Another command prompt appears with DITA-OT in the title bar, as shown in the following
figure:

OpenTopic | Writing Your Own Build Files | 17

4. Enter the following command and press the Enter key:
ant -f buildfile target

The following table describes this command.

Syntax Description

ant Starts the Ant build tool installed as part of DITA-OT.

-f buildfile Specifies the build file containing instructions on how to compile
your document project. If the build file is not in the current
directory, you must specify the path to the file.

target Specifies the desired output type of the document project. DITA
Open Toolkit supports the following targets:

• dita2PDF

• dita2xhtml

• dita2htmlhelp

• dita2eclipsehelp

• dita2eclipsecontent

• dita2rtf

• dita2javahelp

• dita2troff

DITA-OT displays a lot of output in the console window, including whether the build failed or succeeded at the
end of the output.

When your build is unsuccessful, the error message may be difficult to find in the copious output. If you have not
configured your console window most of the early output may have already scrolled off the screen. If you add an
Ant property, -logger to the command line invocation, DITA-OT will save the output to a log file that you can
study after the build finishes.

18 | OpenTopic | Writing Your Own Build Files

About the Java Command Line Interface
Introduction to using generating documents with Java

The DITA Open Toolkit provides a Java interface for organizations that automate their document as part of a Java
build. However, the Java interface is a wrapper for the Ant interface, so you still must install Ant. In addition, only a
subset of the Ant properties are supported by the Java interface.

Three of the Java properties are required:

• /i: defines the location of the .ditamap file for your document
• /outdir: defines the director where the output resides after DITA-OT finishes processing your project
• /transtype: defines the type of document you want to generate for the project.

For example, the following command instructs DITA-OT to build the samples project as a PDF in the out directory:

java -jar lib/dost.jar /i:samples/sequence.ditamap /outdir:out /transtype:pdf

See Ant Build Properties for DITA-OT for descriptions of all supported properties.

Tip: The Java interface for DITA-OT does not currently support multiple threads. If your automated build
script requires multi-threaded programming, you must use the Ant interface instead.

Generating Documents with Java
How to generate documents from the command line with Java

See Ant Build Properties for DITA-OT for descriptions of all supported parameters.

1. Open a command prompt.

2. Change directories to where you installed the DITA Open Toolkit.

3. Enter the following command to set environment variables for DITA-OT:

startcmd.bat

4. Enter the following command:

java -jar lib/dost.jar [optional parameters]

OpenTopic | Debugging DITA-OT Transformations | 19

Debugging DITA-OT Transformations

Transforming your DITA-compliant XML into documents.

Understanding the Role of the FO PlugIn. Debugging FO-generated tranformation files.

Introducing Document Generation
Learning the mechanics of document generation with DITA OT.

Your documentation project uses an Ant build script, which calls a target in another Ant build script in the DITA-
OT root directory, which imports another Ant build script, which itself imports several more Ant build scripts. Sound
confusing? This topic explains this interaction and explains how to identify targets in these scripts related to errors in
your document generation.

Each target in the build script for this Quick Start Guide contains the following code snippet.

<ant antfile="${toolkit_dir}/build.xml" target="init">

The toolkit_dir directory is the root directory where you installed DITA-OT.

The build file you should understand is build.xml, located in toolkit.dir. The Ant targets defined and
imported into this script are the same targets that you see on the console as your build script runs.

DITA-OT Build Script Description

build_init.xml starts the document transformation, initializes the DITA-OT
logger, verifies that the toolkit can locate the files and directories
that you specified in your build file, and prints these values to the
console and the log file, if you have specified one.

build_preprocess.xml Validates your content files, generates lists of input files,
including internal elements distributed across all content, such
as index and conref entries. Moves copies of these files and
elements into the the directory specified by output.dir
property in your build script.

build_general.xml Generates XHTML and HTML output from your input files.

build_dita2wordrtf.xml,
build_dita2xhtml.xml,
build_dita2eclipsehelp.xml
build_dita2javahelp.xml,
build_dita2htmlhelp.xml,
build_dita2pdf

Generate output-specific content from your content files.

Your console displays the name of each Ant target called inside the build scripts, including the output-specific
script. For example, the following screen shot displays the names of Ant targets contained in the output-specific
build_dita2pdf.xml script.

20 | OpenTopic | Debugging DITA-OT Transformations

When you see an error in the output, you should read the Ant target that generated it for clues to solve the problem.
To learn more about what caused the INFO, SEVERE, and WARNING errors in the image above, you should read the
transform.fo2pdf.fop Ant target to learn what the Toolkit was doing when the error occurred and which xsl
file generated the error.

Note: The DITA-OT build scripts sometimes continue to run even if they are unable to generate a temporary
file for one of your content files. The build later displays an error message stating that a DITA-OT build script
cannot find a generated file. This error is often misleading; the problem may be that your content file contains
an error other than XML validation, which would stop the DITA-OT build from proceeding.

DITA-OT uses a separate set of Ant targets to process your PDF if you specify a value for the
args.fo.userconfig property in your document's build script. See Ant Properties for DITA-OT on page 7 for
more information about this property.

OpenTopic | Best Practices | 21

Best Practices

Tips and tricks for working directly with the DITA OT.

Create targets only for document types that you need.

DITA-OT's most attractive feature is its ability to produce so many different types of documents from the same
source files. However, you may find that you need to tweak the targets in your Ant build file to get a document to
meet your customization and style guide requirements. Although the sample documents for DITA-OT ship with
every available target, there is no point in ironing out the details of a dita2rtf target in your build file if your
documentation set doesn't require Word-based documents. If you're not providing JavaHelp, troff, or .rtf, then don't
create targets for them.

Place all content inside or within the map directory if HTML Help is one of your output types.

The HTML Help Compiler cannot compile the files generated by DITA-OT for source files that reside outside the
folder where your .ditamap file resides. If your documentation suite contains HTML Help, you should place all
your source files in or below this directory.

For advanced debugging, use a different temp folder for each document type within the same build.

The Ant build script for the DITA-OT samples uses a unique folder for each build. However, many builds will
include multiple targets, and some of these targets generate overlapping intermediate files. Specify a unique temp
directory for each target within the same build to be sure that the intermediate files that you are reading were
generated for the target you're debugging. See the build file for this document for an example.

	Contents
	Introduction to the DITA Open Toolkit and Ant
	Overview
	About DITA-OT Toolkit Roles
	What is Ant?
	What is DITA-OT?
	When Should I Use DITA-OT?

	Writing Your Own Build Files
	Writing Ant Build Files DITA-OT
	Ant Properties for DITA-OT
	Generating Documents with Ant
	About the Java Command Line Interface
	Generating Documents with Java

	Debugging DITA-OT Transformations
	Introducing Document Generation

	Best Practices
	Index

