
MicroHOPE

User's Manual

Micro-controllers
for

Hobby Projects and Education

Ajith Kumar B P & V V V Satyanarayana

Inter-University Accelerator Centre
(A Research Centre of UGC)

New Delhi 110 067
http://expeyes.in

ajith@iuac.res.in

Chapter 1

Introduction

Most of computer systems in use today are embedded in other machinery, such as au-
tomobiles, telephones, appliances, and peripherals for computer systems. Most of them
need minimal processing and memory requirements and can be implemented using micro-
controllers (uC). A micro-controller is a small computer on a single integrated circuit
consisting of a CPU combined with program and data memory, peripherals like analog
to digital converters, timer/counters, serial communication ports and general purpose
Input/Output ports. Intel 8051, Atmel AVR, PIC etc. are popular micro controllers
available in the market. To design the MicroHOPE hardware, we have chosen ATmega32
micro-controller from Atmel, after considering the hardware resources available on it and
the software support of GNU C compiler.

Why microHOPE ?

Many people who write programs that run on a PC �nd it di�cult to get started on coding
for a microcontroller, mainly due to two reasons: (1) Programming a uC require some
knowledge about the target hardware. (2) Transferring the program to the target device
generally require some special hardware and software. There are plenty of micro-controller
development kits in the market, but most of them focus on the usage of their kit rather
than the details of the the micro-controller. Programming the I/O pins of a development
board using the library functions provided may be acceptable to get something done
quickly, but our method is to directly deal with the the micro-controller, without hiding
the uC details from the user.

A simple Graphical User Interface is provided to Edit, Compile and upload the pro-
gram. We start by programming the Input/Output ports of Atmega32, which require
some basic knowledge of binary number system, C language with its bit manipulation
operators. After that we will proceed to the programming of the peripherals like ADC,
Timer/Counter etc. Since they are more complex, we will start with a software library,
in the form of C source �les, that can be included in your program1. Once you learn how
to write code peripherals, using their control/data registers, there is no need to use these
functions.

Since microHOPE comes with a bootloader pre-installed inside the program memory
of Atmega32, you can upload code using the USB interface with a single click, from the
GUI provided. At the same time, executing the compile and upload programs from a text

1We are very much aware of the drawback of this method. When you include a file all the functions in
that will get added to your executable, increasing its size. Once the code is working, copy the necessary
functions to your source file, instead of including the whole file, to get rid of this difficulty.

2

CHAPTER 1. INTRODUCTION 3

Figure 1.1: (a)MicroHOPE Block diagram.

terminal are also explained. For compiling the C program we use the avr-gcc compiler
and avrdude for uploading it to the target.

1.1 The Hardware

A block diagram of microHOPE hardware is shown in �gure 1.1. Programs can be up-
loaded from the PC through the USB port, using the pre-loaded boot loader code on
the uC. To load a new program, the PC asserts the DTR signal of FT232, that resets
ATmega32. On reset, the boot loader code will start to receive the new code from PC.
After loading the new code, control is transferred to it.

Atmega32 has 32 Input/Output pins, organized as 4 ports, each 8 bit wide. The IC
is available in DIP package, that can be socket mounted. The ATmega32 has 32 kB
of Flash memory, 512 bytes EEPROM and 2 kB Static RAM. Three Timer/Counters,
a serial programmable USART, a byte oriented Two-wire Serial Interface, an 8-channel
10-bit ADC and an SPI serial port are some of the peripheral devices on the chip.

The processor on the microHOPE board runs at 8MHz, using the external crystal.
All the I/O pins, except the UART Rx/Tx pins, are available to the user on the four I/O
connectors. An LED is connected to Bit 0 of Port B, for quick testing of the board. A
reset button is also provided. The 5V USB power is connected to both VCC and AVCC
inputs. A jumper is provided to disable the reset option from the PC. This is required
when the �nal product is used for communicating to a PC.

An alphanumeric LCD display is available as an accessory to microHOPE, to help the
program development. It can be connected to the PORTC socket and C functions are
provided to access the display.

1.2 The MicroHOPE Software

An Integrated Development Environment (IDE) is available for writing, compiling and up-
loading programs. To install it, under Debian/Ubuntu, just install the package microhope,
with your favorite package management application.

CHAPTER 1. INTRODUCTION 4

Figure 1.2: MicroHOPE User Interface

After installing the package, launch the command create-microhope-env: this one
will create a copy of the development environment necessary for microhope.

The program can be started by choosing Science->microHOPE from the Applications
menu. A screen shot of the microhope IDE is shown in �gure 1.2. By default it looks for
�les inside the microhope subdirectory inside your home directory. The IDE provides a
menu to load/save �les, compile and upload the program.

All the examples given in this document will appear inside the directory named 'mi-
crohope'. All �les starting with mh- are the �les containing library functions to access
the various peripherals of Atmega32. To make the source code visible to the user, they
are not compiled as a library �le. Do not modify the �les starting with mh-.

You can select any of the example programs, compile and upload them using the
menu. Correct all the compile errors before doing Upload. Select the hardware device by
Right-clicking inside the Editor window.

1.2.1 Compilation and Upload, without the IDE

Even though the IDE does the job, it is a good idea to learn about the programs used
behind the seen, to compile and upload the code. Those who like to use only the
IDE may skip this section. The software packages used are:

• avr-gcc : To compile the C program, also require the C library avr-libc

• avr-objcopy : To generate the HEX �le

• avrdude : To upload the Hex �le

CHAPTER 1. INTRODUCTION 5

These packages are available under GNU/Linux. They are automatically installed as de-
pendencies when you install the package microhope from Debian/Ubuntu o�cial repos-
itories.

Use a text editor to create your source program, for example blink.c, and compile it
using:

$ avr-gcc -Wall -O2 -mmcu=atmega32 -o blink blink.c

We have asked the compiler to print all the warnings, optimize to level 2, generate code
for atmega32. The executable output stored in blink and input taken from blink.c. The
executable �le is converted into Intel Hex format using the following command:

$ avr-objcopy -j .text -j .data -O ihex blink blink.hex

The Hex �le is now ready for upload. This can be done using the command:

$ avrdude -b 19200 -P /dev/ttyUSB0 -pm32 -c stk500v1 -U flash:w:blink.hex

We have speci�ed a baudrate of 19200, the output device is /dev/ttyUSB0, m32 processor
and the transfer protocol stk500v1.

1.2.1.1 Some batch �les

Since a lot of command line arguments are required to specify the compiler, linker and
loader options, it is convenient to put them in small batch �les or shell scripts. These
�les can be found inside the microhope directory, once the package is installed. The
compilation of C code and generation of Intel Hex format �le for uploading is done by
compile-mega32.sh, listed below.

$ avr-gcc -Wall -O2 -mmcu=atmega32 -Wl,-Map,$1.map -o $1 $1.c

$ avr-objcopy -j .text -j .data -O ihex $1 $1.hex

$ avr-objdump -S $1 > $1.lst

For example, to compile a program named 'hello.c', it should be invoked from the com-
mand line as;

$./compile-mega32.sh hello

The .c extension should not be speci�ed. The script also generates the linker MAP �le
and a listing �le, that may be used for examining the generated output.

Under GNU/Linux, microhope on the USB port will appear as �le '/dev/ttyUSB0'
and program uploading is done by mh-upload.sh, listed below

$ avrdude -b 19200 -P /dev/ttyUSB0 -pm32 -c stk500v1 -U flash:w:$1.hex

To upload hello.hex, use the command

$./mh-upload hello

CHAPTER 1. INTRODUCTION 6

1.2.2 Using under Raspberry Pi

The required packages are available on Raspberry Pi. Install and use as explained in
section 1.2.1

1.2.3 Using under MS Windows

Download winavr package from sourceforge.net and install it.

For FT232 version, install the VCP drivers from

http://www.ftdichip.com/Drivers/VCP.htm

For MCP2200 version, install the ACM drivers from

http://www.expeyes.in/sites/default/�les/debs/MCP2200-driver.zip

Download and install the MicroHOPE IDE from expeyes website

Running from command prompt

Use a text editor like notepad to edit the source program and save it with a .c extension.
The commands for compilation and uploading are:

C:\> avr32-gcc -Wall -O2 -mmcu=atmega32 -o blink blink.c

C:\> avr32-objcopy -j .text -j .data -O ihex blink blink.hex

C:\> avrdude -b 19200 -P COMxx -pm32 -c stk500v1 -U flash:w:blink.hex

Where COMxx is the virtual com port number assigned by Windows. We have found
it very di�cult due to the arbitrary naming of COM ports and reliability issues in the
hardware communication.

Chapter 2

Getting Started

After installing the Debian package, you must have launched the command create-microhope-env

which provides you a directory with a necessary set of �les. Start the microHOPE IDE
from the menu Applications->Science. Choosing File->Open from the menubar will dis-
play all the C �les inside the microhope directory. You can open any of the exam-
ples (except the �lenames starting with mh-) , compile and upload it by clicking on the
menubar. We will start by programming the Digital Input/Output ports of Atmega32,
and then proceed to the peripheral devices. 1.

The avr-gcc compiler allows us to program the control/data registers and their individ-
ual bits using the same names given in the Atmega32 manual. The registers are accessed
just like normal variables, the statement PORTB = 15 , writes the number 15 to Port B.
The individual pins are referred using names like PA0, means BIT 0 of PORTA.

2.1 Testing the Hardware

Connect MicroHOPE hardware to a USB port and start the microHOPE IDE from the
menu Applications->Science. The program will show the Device as Not Selected. Right-
click inside the Editor window to get a popup menu of the available USB to Serial devices.
It will contain entries like '/dev/ttyUSB0', '/dev/ttyACM0' etc. If the board has FT232
IC (28 pin SMD chip) , choose the ttyUSB type. If the board has MCP2200 (20 pin SMD
chip) choose ttyACM type. If you are running expEYES, do not choose the device used
by expEYES.

Using File->Open from the menubar, load blink.c from the microhope directory.
Compile and Upload the program by clicking on the menu labels. It should give a message
'Upload Completed'. If not, check the USB connections �rst. If problem persists, try
pressing and releasing the microHOPE Reset button at the same time when you click on
Upload. Make sure that the PCRST jumper is closed.

Once the program is uploaded, the LED connected to PB0 should blink at 1 Hz rate.
If not, press the reset button on the board.

2.2 Input/Output ports of Atmega32

The pinout diagram of Atmega32 is shown in �gure 2.1. There are 32 pins organized as
four ports named A, B, C and D, each 8 bit wide. Each pin can be con�gured as an input

1For complete details of Atmega32 refer to http://www.atmel.in/Images/doc2503.pdf

7

CHAPTER 2. GETTING STARTED 8

Figure 2.1: Atmega32 Pinout

or output. The data direction and transfer are done by writing to the registers DDRX,
PORTX and PINX (where X stands for A, B, C or D).

• DDRX : Every pin of an I/O port can be con�gured as Input or Output using the
Data Direction registers DDRX. To con�gure a pin as output, set the corresponding
bit in DDRX, and clear it to make the corresponding pin as input. For example,
DDRA = 1 will con�gure BIT 0 of Port A (PA0) as output, and all other pins as
input.

• PORTX : For pins that are con�gured as ouput, assigning a value to PORTX will
set that data on them. For example PORTA = 1 will make PA0 high, that can be
measured on the pin number 40 of the IC.

• PINX : For the pins con�gured as inputs, PINX will read the status of the external
voltage level connected to the pins. For pins that are con�gured as outputs, PINX
will return the data written to PORTX.

If the pins con�gured as inputs are left unconnected, there could be unwanted level changes
due to electrical noise, this can be prevented by enabling the internal pull-up resistor. For
pins that are con�gured as inputs, setting/clearing the bits in PORTX will enable/disable
the corresponding internal pullup resistor.

The operations described above can be understood easily with some examples. For a
quick test, MicroHOPE hardware has an LED connected to PB0, with a series resistor
for current limiting.

2.2.1 Reading and Writing Ports

The program copy.c reads the voltage level at PA0 (Pin 0 of Port A) and sets the same
on PB0, where we have the LED. We will enable the internal pullup resistor on PA0 so
that and it will go LOW only when it is connected to ground using a piece of wire.

#include <avr/io.h> // Include file for I/O operations

int main (void)

{

CHAPTER 2. GETTING STARTED 9

DDRA = 0; // Port A as Input

PORTA = 1; // Enable pullup on PA0
DDRB = 1; // Configure PB0 as output

for(;;)

PORTB = PINA; // Read Port A and write it to Port B

}

To test this example, open copy.c from the File menu of microHOPE IDE, Click on
Compile and then Upload from the menubar The LED on PB0 should start glowing after
uploading the program. LED will be o� when you connect PA0 to ground. You may
rewrite the program so that the LED may be controlled by some other bit con�gured as
input.

The simple program given above has certain drawbacks. It changes PORTB as a whole
instead of acting on PB0 alone. Suppose we have something else connected to the other
pins of Port B, they also will be a�ected by the action PORTB = PINA. To avoid such
problems, we should manipulate individual bits. The include �le mh-digital.c contains
macros for setting and clearing bits by specifying their position.

2.2.2 Bit manipulation macros

These macros can be used on variables, de�ned in the program, and also on registers like
DDRX, PORTX etc.

BITVAL(bit position)

The value of bit position could be 0 to 7 in the case of 8 bit integers and 0 to 15 for 16
bit integers. This macro returns (1 <�< bit position). For example BITVAL(3), will give
8, that is binary 1000, obtained by left shifting of 1 thrice.

SETBIT(variable, bit position)

This macro SETS the speci�ed bit in the given variable, without a�ecting the other bits.
For example SETBIT(DDRB, 7), will make the last bit of DDRB high.

CLRBIT(variable, bit position)

This macro clears the speci�ed bit of the given variable. For example CLRBIT(val, 0),
clears the least signi�cant bit of 'val', that is an integer type variable.

GETBIT(variable, bit position)

This macro returns the value of the speci�ed bit if the speci�ed bit of the variable is 1,
else it returns zero. For example: if x = 3, GETBIT(x, 1) will return 2 and GETBIT(x,3)
will return zero.

Let us rewrite the previous program as copy2.c, using these macros as:

#include <avr/io.h>

int main (void)

{

uint8_t val;

CHAPTER 2. GETTING STARTED 10

DDRA = 0; // Port A as Input

PORTA = 1; // Enable pullup on PORTA, bit 0
DDRB = 1; // Pin 0 of Port B as output

for(;;)

{

val = GETBIT(PORTA, 0);

if (val != 0)

SETBIT(PORTB, 0);

else

CLRBIT(PORTB, 0);

}

}

The same can be done, without using the bit manipulation macros, as shown in copy3.c

#include <avr/io.h> // Include file for I/O operations

int main (void)

{

uint8_t val; // 8 bit unsigned word

DDRA = 0; // Port A as Input

PORTA = 1; // Enable pullup on PA0
DDRB = 1; // Configure PB0 as output

for(;;)

if(PINA & 1) // If PA0 is set

PORTB |= 1; // Set PB0, by ORing with 00000001b

else // otherwise clear PB0

PORTB &= ~1; // by ANDing with 11111110b (~00000001b)
}

The code fragment shown above uses the Bitwise AND, OR and NOT operators.

2.2.3 Blinking LED

Making pin PB0 HIGH and LOW in a closed loop result in the blinking of the LED
conencted to it. We need to slow down the rate of blinking so that it can be perceived by
our eyes. This can be done by making the processor wait for a while between writing to
PORTB. There are some delay functions provided for this. The �le mh-utils.c contains
the following functions:

delay_100us(int n)

This function will make the CPU idle for n x100 microseconds. For example to insert a
200 microsecond delay, call delay_100us(2)

CHAPTER 2. GETTING STARTED 11

Figure 2.2: LCD display. (a) connections to microHOPE (b) Photograph of 2x16 character
display

delay_ms(int n)

This function will make the CPU idle for n milliseconds. For example to insert a 500
millisecond delay, call delay_ms(500)

The program blink.c lis listed below:

#include �mh-utils.c�

int main (void)

{

DDRB = 1; // configure PB0 as output

for(;;)

{

PORTB = 1;

delay_ms(500);

PORTB = 0;

delay_ms(500);

}

}

If everything goes �ne, you should see the LED blinking. You can remove the delay
statements and watch the high frequency pulses on PB0 using an oscilloscope.

2.3 The LCD Display

For many applications, it is necessary to have a local display. The HD44780 controller, or
compatible IC, based displays are widely available. They come with a 16 pin connector
and the transfer protocol is well documented 2. The connections between microHOPE
and the LCD display are shown in �gure 2.2(a). Pins 4,5 and 7 of the LCD display are
control lines, connected to PC1, PC2 and PC4. The ASCII codes are transferred in the
4bit mode, using pins 11 to 14 connected to PC4, PC5, PC6 and PC7. The �le 'mh-lcd.c'
contains functions to access the display. Most of the examples given below make use of
the LCD display.

The example program hello.c listed below demonstrates the usage of the LCD display.

#include "mh-lcd.c"

int main()

{

lcd_init();

2For details refer to http://en.wikipedia.org/wiki/Hitachi_HD44780_LCD_controller

CHAPTER 2. GETTING STARTED 12

lcd_put_string("Hello World");

}

The �le pmdk_lcd.c provides the following functions :

• lcd_init() : Initializes the LCD display, must be called once in the beginning

• lcd_clear() : Clears the display

• lcd_put_char(char ch) : Outputs a single character to the LCD display

• lcd_put_string(char* s) : Displays a string to the LCD

• lcd_put_byte(uint8_t i) : Diplays an 8 bit unsigned integer

• lcd_put_int(uint16_t i) : Displays a 16 bit unsigned integer

• lcd_put_long(uint32_t i) : Displays a 32 bit unsigned integer

2.4 Analog to Digital Converter

Most of the I/O PORT pins of Atmega32 has alternate functions. PA0 to PA7 can be
used as ADC inputs by enabling the built-in ADC. All the pins con�gured as inputs in
the DDRA will become ADC inputs, but the ones con�gured as outputs will remain as
digital output pins. The ADC converts the analog input voltage in to a 10-bit digital
value. The minimum value represents GND and the maximum value represents the ADC
reference voltage. The reference inputs could be AVCC, an internal 2.56V or a voltage
connected to the AREF pin. The selection is done in software. The ADC operation is
controlled via the registers ADMUX and ADCSRA. The data is read from ADCH and
ADCL.

The include �le 'mh-adc.c' provides the following functions:

1. adc_enable() : Enables the ADC

2. adc_disable() : Disables the ADC

3. adc_set_ref(ref) : Select the reference, where ref is REF_EXT is an external volt-
age is applied to the AVREF pin, REF_INT to use the internal 2.56 V reference
and REF_AVCC to connect the AVCC supply internally to AVREF.

4. read_adc(ch) : Converts the voltage on channel ch and returns it in a 16 bit number.

2.4.1 Reading an Analog Voltage

The example program adc.c , reads an ADC input and display the result on the LCD.

#include "mh-lcd.c"

#include "mh-adc.c"

main()

{

uint16_t data;

lcd_init();

CHAPTER 2. GETTING STARTED 13

adc_enable();

data = read_adc(0);

lcd_put_int(data);

}

2.4.2 Programmig ADC registers

The operation of the ADC is controlled mainly by the registers ADCSRA and ADMUX.
Setting ADEN will enable the ADC and setting ADSC will start a conversion. The bit
ADIF is set after a conversion and this bit can be cleared by writing a '1' to it. The
ADSP bits decide the speed of operation of the ADC, by pre-scaling the clock input. The
channel number is selected by the MUX0 to MUX4 bits in the ADMUX rregister. The
reference input is selected by the REFS0 and REFS1 bits.

The program adc-v2.c, demonstrates the usage of these registers.

#include <avr/io.h>

#include "mh-lcd.c"

// convert channel 0, set pre-scaler to 7

main()

{

uint16_t data;

lcd_init();

ADCSRA = (1 <�< ADEN) | 7; // Enable ADC, set clock pre-scaler

ADMUX = (1 <�< REFS0); // AVCC reference, channel 0

ADCSRA |= (1 <�<ADSC); // Start ADC

while (!(ADCSRA & (1<�<ADIF))) ; // wait for ADC conversion

data = (ADCH <�< 8) | ADCL; // make 10 bit data from ADCL and ADCH

lcd_put_int(data);

}

2.4.3 Reading in a Loop

The example program adc-loop.c , reads an ADC input in a loop and display the result
on the LCD. If the input is left unconnected, the displayed value could be anywhere
between 0 an 1023. Connecting PA0 to 5V will display 1023, the maximum output.

#include "mh-lcd.c"

#include "mh-adc.c"

#include "mh-utils.c"

main()

CHAPTER 2. GETTING STARTED 14

{

uint16_t data;

lcd_init();

adc_enable();

for (;;)

{
data = read_adc(0);

lcd_clear();
lcd_put_int(data);

delay_ms(100);

}
}

Modify the code for reading other ADC channels.

2.4.4 Temperature Controller

The program adc-loop.c can be easily modi�ed to make a temperature monitor/controller
using the LM35 temperature sensor. Connect LM35 output to PA0. At 1000C , the
output of LM35 will be 1 volt. With the internal 2.56 volts as reference, the ADC output
will be around 400 (1.0 / 2.56 * 1023).

Drive the relay contact controlling the heater from PB0, via a transistor. Insert the
following line in the beginning

DDRB = 1

and within the loop:

if (data > 400) // switch off heater

PORTB = 0;

else if (data < 395) // switch on heater

PORTB = 1;

The heater will be switched OFF when the ADC output is greater than 400. It will be
switched ON only when the output goes below 395. The window of 6 is given to avoid
the relay chattering.

2.5 Timer/Counters

ATmega16 has three counter/timer units. Two of them are of 8 bit size and one is 16
bit. The counter input could be from derived from the internal clock or from an external
source. The output of the counter is compared with setpoint registers and di�erent types
of actions are taken on compare match. The mode of operation of Counter/Timer is
programmed by setting the bits in the control registers. These circuits are useful for time
interval measurements and generating di�erent kinds of waveforms.

CHAPTER 2. GETTING STARTED 15

Figure 2.3: 8 bit Timer/Counter0 Schematic

2.5.1 8 bit Timer/Counter0

A block diagram of Timer/Counter0 is shown in �gure2.3. The counter TCNT0 gets its
input and control signals from the control logic circuit. The counter output is compared
with a Output Compare Register OCR0 and a compare match can trigger di�erent types
of actions, like generating a waveform on OC0 (pin 4 of Atmega32, same as PB3). The
mode of operation is decided by the register TCCR0, shown below:

Let us start using Timer/Counter0 with the help of the following functions.

sqwave_tc0(csb, ocrval)

This function generates a square wave on OC0, whose frequency is decided by the clock
select bits (csb) and ocrval. Example sqwave-tc0.c listed below demonstrates the usage
of this function.

// example : sqwave-tc0.c

#include "mh-timer.c"

csb = 2; // Clock select bits

ocrval = 99; // Output Compare register vaule

int main()

{

sqwave_tc0(csb, ocrval);

}

The 8MHz system clock is divided by 8 (csb =2, refer to table below) to get a 1MHz input
to the counter. The OCR0 register is set to 99. The mode bits are set such that the when
the counter value reaches the OCR0, the output is toggled and counter is cleared. This
will result in the waveform generator output toggles after every 100 clock cycles, giving a
5kHz sqaurewave on pin OC0 (PB3). You may view this on an oscilloscope. If you do not

CHAPTER 2. GETTING STARTED 16

have one, connect a loudspeaker with a 100Ω series resistor from PB3 to ground. We have
used expEYES for viewing and characterizing the waveforms generated by microHOPE.

Changing ocrval to 199 will give output 2.5kHz on the output. The output frequency
is given by the relation

f =
fclock

2.N.(1 + OCR0)

where fclock is the system clock and N is the clock division factor, as shown below.

pwm_tc0(csb, ocrval)

This function generates a Pulse Width Modulated waveform on OC0, whose frequency is
decided by the clock select bits (csb) and the duty cycle by the ocrval. The output OC0
is cleared when the counter reaches the OCR0 value, the counter proceeds upto 255 and
then sets OC0. The program pwm-tc0.c generates a 3.9 kHz PWM with 25% dutycycle.

// example : pwm-tc0.c

#include "mh-timer.c"

uint8_t csb = 2; // Clock select bits uint8_t

ocrval = 63; // Output Compare register vaule

int main()

{

pwm_tc0(csb, ocrval);

}

PWM waveforms are often used for generating analog DC voltages, in 0 to 5 volts range,
by �ltering it using an RC circuit. It is better to set a higher frequency so that the �lter
RC value could be small. The frequency can be made 31.25kHz by setting csb=1. The
DC level is decided by the value of OCR0, ranging from 0 to 255. Once you learn howto
manipulate the control registers, the same thing can be done without calling the library
function, as shown below.

// example : pwm-tc0-v2.c

#include <avr/io.h>

uint8_t csb = 1; // Clock select bits uint8_t

ocrval = 254/4; // Output Compare register vaule

int main()

{

// Set TCCR0 in the Fast PWM mode

TCCR0 =(1 <�< WGM01) | (1 <�< WGM00) | (1 <�< COM01) | csb;

OCR0 = ocrval;

TCNT0 = 0;

CHAPTER 2. GETTING STARTED 17

Figure 2.4: 16 bit Timer/Counter1 schematic

DDRB |= (1 <�< PB3); // Set PB3(OC0) as output

}

Connect a 1k resistor and 100uF capacitor in series from PB3 to ground,as shown below,
and measure the voltage across the capacitor using a voltmeter.

2.5.2 16 bit Timer/Counter1

The Timer/Counter1 has more features like two Output Compare Registers, Input Cap-
ture unit etc., as shown in �gure2.4. The frequency and duty cycle of the waveforms can
be controlled better due to the 16 bit size of the counters. Some C functions to use the
T/C1 are given below.

sqwave_tc1(csb, OCRA)

// example : sqwave-tc1.c

#include "mh-timer.c"

uint8_t csb = 2; // 2 is divide by 8 option, 1MHz clock in

uint16_t ocra = 50000; // Output Compare register A

int main()

{

sqwave_tc1(csb, ocra);

}

CHAPTER 2. GETTING STARTED 18

pwm10_tc1(csb, OCRA)

This function generates a PWM waveform with 10bit resolution. The value of ocra should
be from 0 to 1023 to set the duty cycle.

// example : pwm-tc1.c

#include "mh-timer.c"

uint8_t csb = 1; // 1 => 8MHz clock in

uint16_t ocra = 1024/3; // Duty cycle arounf 33%

int main()

{

pwm10_tc1(csb, ocra);

}

2.5.3 8 bit Timer/Counter2

This one is similar to Timer/Counter0.

sqwave_tc2(uint32_t freq)

This function generates a square wave on OC2. The clock selction bits and the OCR2
value are calculated. It is not possible to set all frequency values using this method. The
actual frequency set is returned and displayed on the LCD.

//Example sqwave-tc2.c

#include "mh-timer.c"

#include "mh-lcd.c"

int main()

{

uint32_t f;

lcd_init();

f = set_sqr_tc2(1500);

lcd_put_long(f);

}

PWM by programming the registers

The example given below demonstrates the usage of T/C2 as a PWM waveform generator,
by setting the control register bits. The duty cycle is set to 25% by setting the OCR2 to
one fourth of the maximum.

// example : pwm-tc2.c

#include <avr/io.h>

uint8_t csb = 2; // Clock select bits uint8_t

ocrval = 255/4; // Output Compare register vaule

int main()

{

// Set TCCR0 in the Fast PWM mode

TCCR2 =(1 <�< WGM21) | (1 <�< WGM20) | (1 <�< COM21) | csb;

OCR2 = ocrval;

CHAPTER 2. GETTING STARTED 19

TCNT0 = 0;

DDRD |= (1 <�< PD7); // Set PD7(OC2) as output

}

2.5.4 More applications of Timer/Counter

Timer/Counter can be used for timing applications, like measuring the time elapsed be-
tween two events or counting the number of pulse inputs during a speci�ed time interval.

measure_frequency()

This function counts the number of pulses received on the external input of Timer/Counter1
(PB1) during 500 milliseconds to calculates the frequency of the input pulse.

// Example freq-counter.c

#include "mh-utils.c"

#include "mh-timer.c"

#include "mh-lcd.c"

int main()

{

uint32_t f;

set_sqr_tc2(1500); // Set a square wave on TC2 output (PD7)

lcd_init();

while(1)

{

f = measure_freq();

lcd_clear();

lcd_put_long(f);

delay_ms(200);

}

return 0;

}

Connect PD7 to PB1 and upload the program freq-counter.c to read the frequency on
the LCD display. You can also connect PB1 to an external pulse source to measure its
frequency. The maximum frequency that can be measured is limited by the size of the
counter, that is 63535, means we it can handle upto around 126 kHz.

Time Interval Measurement

The T/C units can be programmed to keep track of time interval between two events.
The program r2ftime.c measures the rising edge to falling edge time on PB1.

// Example r2ftime.c

#include "mh-utils.c"

#include "mh-timer.c"

#include "mh-lcd.c"

int main()

{

lcd_init();

CHAPTER 2. GETTING STARTED 20

set_sqr_tc2(500); // Test signal on PD7

while(1)

{

lcd_clear();

lcd_put_long(r2ftime(PB1));

delay_ms(100);

}

}

The function r2ftime() uses two other functions, called start_timer() and read_timer(),
that are explained below.

• void start_timer() : Start the counter with a 1 MHz clock input. An interrupt
service routine is activated when the count reached 50000, that increments another
interger.

• uint32_t read_timer() : Stops the counter and returns the microseconds elapsed
after calling start_timer(). There will be an error of 2 to 3 microseconds, that is
due to the overhead of the function calls.

2.5.4.1 Distance Measurement

This technique is used for measuring distance using an ultrasound echo module HY-
SRF053, using ultra-sound-echo.c. The trigger is connected to PB0 and the echo is
connected to PB1. The distance is measured by

// Example ultra-sound-echo.c

#include "mh-utils.c"

#include "mh-timer.c"

#include "mh-lcd.c"

int vsby2 = 17; // velocity of sound in air = 34 mS/cm

int main()

{

uint32_t x;

DDRB |= (1 <�< PB0); // set PB0 as output

DDRB &= ~(1 <�< PB1); // and PB1 as inpt

lcd_init();

while(1)

{

PORTB |= (1 <�< PB0); // set PB0 HIGH

delay_100us(1);

PORTB &= ~(1 <�< PB0); // set PB0 LOW

delay_100us(5); // Wait for a while to avoid false triggering

start_timer();

while((PINB & 2) != 0) ; // Wait for LOW on PB1

x = read_timer() + 400;

lcd_clear();

lcd_put_long(x*vsby2/1000); // distance in cm

3http://www.robot-electronics.co.uk/htm/srf05tech.htm

CHAPTER 2. GETTING STARTED 21

delay_ms(500);

}

}

2.6 Talking to the PC, via USB

On the microHOPE board, the Rx/Tx pins of ATmega32 are connected to the USB to
Serial Converter IC. User programs also can use this path to communicate to the PC via
the USB port.

The following functions are available for handling the UART

1. uart_init(baud) : 38400 is the maximum baudrate supported. You can use any
submultiple of that. We use 1 Stop Bit and the parity is Even.

2. uart_recv_byte() : Waits on the UART receiver for a character and returns it

3. uart_send_byte(c) : Sends one character over the UART transmitter.

On the PC side, we use a simple Python program to communicate to the micro-controller.
The USB to Serial interface will appear as a virtual COM port on the PC, on GNU/Linux
systems it can be accessed as /dev/ttyUSB0. You need to install Python interpreter and
the python-serial module on the PC for this to work. These Python programs should be
terminated before using microHOPE again to upload programs.

2.6.1 Send/receive Characters

The program echo.c waits for data from the PC, vis the USB to serial converter, increment
it by one and sends it back. The received data is also displayed on the local LCD display.

#include "mh-lcd.c"

#include "mh-uart.c"

int main(void)

{

uint8_t data;

lcd_init();

uart_init(38400);

for(;;)

{

data = uart_recv_byte();

lcd_put_char(data);

uart_send_byte(data);

}

}

After uploading this program, open a terminal window, change to the directory named
microhope and run the python program echo.py listed below, using the commands:4

$ cd microhope
$ python echo.py

4If you are using microHOPE with MCP2200 IC, edit echo.py to replace ttyUSB0 with ttyACM0.
The same thing applies to programs like cro.py, pymicro.py etc.

CHAPTER 2. GETTING STARTED 22

import serial

fd = serial.Serial('/dev/ttyUSB0', 38400, stopbits=1, \

timeout = 1.0)

while 1:

c = raw_input('Enter the character to send: ')

fd.write(c)

print 'Receiced ', fd.read()

We can rewrite echo.c without using the library functions. The program echo-v2.c listed
below id functionally identical to echo.c

#include "mh-lcd.c"

int main(void)

{

uint8_t data;

lcd_init();

// set UART to 38400 baudrate, 8 databit, 1 stopbit, No parity

UCSRB = (1 <�< RXEN) | (1 <�< TXEN);

UBRRH = 0;

UBRRL = 12; // At 8MHz (12 =>38400)

UCSRC = (1<�<URSEL) | (1<�<UCSZ1) | (1<�< UCSZ0);

for(;;)

{

while (!(UCSRA & (1<�<RXC))); //wait on the receiver

data = UDR; // read a byte

lcd_put_char(data);

while (!(UCSRA & (1<�<UDRE))); // wait on Data Reg Empty flag

UDR = data;

}

}

2.6.2 Sending ADC data

The program remote-adc.c, listed below, on receiving a channel number, in 0 to 7 range,
reads the corresponding channel and send the data to the PC using the UART, via the
USB to Serial converter. Use the Python program remote-adc.py on the PC side.

#include "mh-lcd.c"

#include "mh-uart.c"

#include "mh-adc.c"

int main(void)

{

uint8_t chan, low, hi;

uint16_t adcval;

lcd_init();

uart_init(38400);

adc_enable();

for(;;)

{

CHAPTER 2. GETTING STARTED 23

data = uart_recv_byte();

if (chan <= 7)

{

adcval = read_adc(chan);

lcd_clear();

lcd_put_int(low);

low = adcval & 255;

hi = adcval >�> 8;

uart_send_byte(low); // send LOW byte

uart_send_byte(hi); // send HI byte

}

}

}

2.6.3 A simple Oscilloscope

The program cro.c can digitize the input at PA0 in a block mode and send the data to
the PC. The number of samples and the time interval between consecutive digitizations
are send from the PC. The program cro.py can communicate to cro.c and graphically
display the received data. While running cro.py , the PCRST jumper should be open.

2.6.4 Infrared Receiver

The program ir-recv.c can receive data using the TSOP1738 IR receiver. The output of
the chip is connected to bit 2 of PORTD. The received byte is displayed on the LCD
display. The receiver is for the non-standard data senb by expEYES junior using an
infra-red LED.

To test ir-recv.c, make the connections as shown below:

pics/ir-receiver.png

Inside the command window of expEYES junior GUI, type irsend1(nn) , where nn
could be any number from 0 to 255, and press Enter. The received number will be
displayed on the LCD display of microHOPE.

2.6.5 Controlling the uC from Python

This section demonstrates a simple method to read/write the Input/Output ports and
other registers of the micro-controller, from Python. A program called pymicro.c is
running on the micro-controller. It listens over the serial port for two commands, READB
or WRITEB. The �rst one should be followed by the address of the register to be read.
The WRITE command is followed by the register address and the data to be written.

On the PC side, pymicro.py handles the communication to the micro-controller. It
de�nes a class named atm32, that contains the communication routines. The example
program listed below demonstrates a blinking LED code in Python

import time

from pymicro import *

u=atm32()

CHAPTER 2. GETTING STARTED 24

while 1:

u.outb(PORTB, 1)

time.sleep(0.5)

u.outb(PORTB, 0)

time.sleep(0.5)

To run this program, compile and upload pymicro.c, remove the PCRST jumper and then
run blink.py. It is very easy to implement many programs, for example a stepper motor
controller, in Python using this method.

Chapter 3

Serial Loading of Program memory

We are able to load programs to microHOPE through Rx/Tx pins of the UART only
because of the pre-loaded boot loader program. How to program a micro-controller using
the In-System Programming (ISP) feature is explained below. This is implemented using
the Serial Peripheral Interface (SPI) interface of the micro-controller. The SPI consists
of three wires, Serial ClocK (SCK), Master-In�Slave-Out (MISO) and Master-Out�Slave-
In (MOSI). All types of memory on the micro-controller can be accessed using the SCK,
MISO and MOSI pins, while holding the RESET pin LOW. These pins, along with ground,
are available on the 5 pin header J7 on the microHOPE board. For details, refer to the
circuit schematic shown in �gure 3.3.

The SPI pins can be accessed by connecting to the Parallel port of the PC, using
a cable as shown is �gure 3.1. We can also use In-System Programmers that can be
connected to the USB port of the PC. We are using an ISP called the USBASP, that is
open hardware.

The microHOPE IDE can upload programs using the USBASP programmer

3.0.6 Software

The program avrdude can be used for programming the micro-controller by using Parallal
port or the USBASP programmer. The commands to use, as root user, are:

avrdude -c dapa -patmega32 -U flash:w:blink.hex

avrdude -c usbasp -patmega32 -U flash:w:blink.hex

pics/minimum_circuit.eps

Figure 3.1: PC Parallel port cable for Serial loading of program memory.

25

CHAPTER 3. SERIAL LOADING OF PROGRAM MEMORY 26

Figure 3.2: USBASP programmer.(a) block diagram (b) layout

Figure 3.3: Circuit schematic of microHOPE

The -c option is used for specifying the programmer to be used. The commands should
be given from a terminal, after changing to the directory 'microhope', where all the data
�les are kept.

Setting up the Boot Loader

We can use one of these methods for uploading the bootloader program of microHOPE.
The commands for uploading the hex �le and setting the fuses, using the parallel port
cable, are:

avrdude -c dapa -patmega32 -U �ash:w:ATmegaBOOT_168_atmega32.hex

avrdude -c dapa -patmega32 -U lfuse:w:0xef:m -U hfuse:w:0xda:m

If you are using USBASP, use:

avrdude -c usbasp -patmega32 -U �ash:w:ATmegaBOOT_168_atmega32.hex

avrdude -c usbasp -patmega32 -U lfuse:w:0xef:m -U hfuse:w:0xda:m

For more details refer to the microhope section of the website expeyes.in
The circuit schematic of microHOPE is shown in �gure 3.3

