
.

ExpEYES-Junior

Programmer's Manual

Ajith Kumar B.P

Inter-University Accelerator Centre

New Delhi 110 067

Version 1.1 (26-Oct-2013)

http://expeyes.in

1

Contents

1 Introduction 4

1.1 Software . 4

2 Hardware Communication 6

2.1 Analog Output . 7

2.1.1 set_voltage() . 7

2.2 Digital Inputs (IN1, IN2 and SEN) . 8

2.2.1 get_state(channel#) . 8

2.3 Digital Output (OD1) . 8

2.3.1 set_state(channel#, state) . 8

2.4 Analog Inputs (A1,A2,IN1,IN2 & SEN) . 8

2.4.1 get_voltage(channel#) . 9

2.4.2 get_voltage_time(channel#) . 9

2.4.3 get_voltageNS(channel#) . 9

2.4.4 capture(ch, NP, tg) . 10

2.4.5 capture2, capture3 & capture4 . 10

2.4.6 capture_hr(ch, NP, tg), capture2_hr(ch1, ch2, NP, tg) 11

2.5 Capture modi�ers . 11

2.5.1 set_trigger(trigval) . 12

2.5.2 set_trigsource(channel#) . 12

2.5.3 enable_wait_high(channel#), ..._low(...), ..._falling(...), ..._rising(...) . 13

2.5.4 enable_set_high(channel#), ..._low(...), ..._pulse_high(...), ..._low(...) 13

2.5.5 set_pulsewidth(width) . 13

2.6 Waveform Generation . 14

2.6.1 set_sqr1(freq), set_sqr2(freq) . 14

2.6.2 set_sqrs(freq, phase shift in percent) . 14

2.6.3 set_sqr1_pwm(dutycycle), set_sqr2_pwm(dutycycle) 14

2.6.4 set_sqr1_dc(voltage), set_sqr2_dc(voltage) 15

2.6.5 get_frequency(pin) . 15

2.7 Infrared Transmission . 15

2.7.1 irsend1(byte) . 15

2.7.2 irsend4(byte, byte, byte, byte) . 16

2

2.8 Passive Time Interval Measurements . 16

2.8.1 r2ftime(pin1, pin2) , f2rtime(pin1, pin2) 16

2.8.2 r2rtime(pin1, pin2), f2ftime(pin1, pin2) 16

2.8.3 multi_r2rtime(channel#,skip_edges) . 17

2.9 Active Time Interval Measurements . 17

2.9.0.1 set2rtime (Digital Output, Digital Input) 17

2.9.0.2 htpulse2rtime(Digital output, Digital Input) 17

2.9.0.3 set_pulse_width(width) . 18

2.10 1mA Current Source . 18

2.11 Capacitance measurements . 18

2.11.1 measure_cap() . 18

2.11.2 measure_cv(channel, duration, current) 19

2.11.3 set_current(channel, current) . 19

2.12 Resistance Measurements . 19

2.12.1 measure_res() . 19

2.13 Disk Writing . 20

2.13.1 save_data . 20

3 Data processing 21

3.0.2 �t_sine . 21

3.0.3 �t_dsine . 21

3.0.4 �t_exp . 22

3.0.4.1 �t . 22

4 Experiments 23

4.1 Transient response of LC circuit . 23

3

Chapter 1

Introduction

The design of expEYES is shown schematically in �gure1.1, along with the top panel marking

the Input/Output connectors explained in table 1.1. Functions for accessing the feature of the

expEYES hardware, like measuring a voltage or frequency, setting a voltage or frequency, mea-

suring time intervals etc. are available in Python and C languages. Data analysis and graphics

functions are given in two separate Python modules. Application programs are developed using

these modules.

1.1 Software

There are mainly three modules under the expeyes package:

• eyesj.py : hardware communication

• eyeplot.py : Graphics using using Tkinter module

• eyemath.py : data analysis using modules numpy and scipy

• ejlib.c & ejlib.h : C library and the header �le

They can be installed by using the .tgz �les or the .deb packages provided on http://expeyes.in.

4

Figure 1.1: expEYES Junior Top panel and Block diagram

Pin # Name Description

1 GND Ground
2 IN1 0 to 5V range Analog /Digital Input, Current Source
3 IN2 0 to 5V range Analog / Digital Input, Current Source
4 SEN 0 to 5V range Analog/Digital Input, with 5K pullup, for resistive sensors
5 SQR1 .7Hz to 200kHz Square Wave Output, 100Ω series resistor
6 SQR2 .7Hz to 200kHz Square Wave Output, no series resistor
7 OD1 Digital Output, no series resistor
8 CCS 1 mA Constant Current Source with ON/OFF Control
9 GND Ground
10 GND Ground
11 SINE Sinewave output, around 150 Hz, 4 volts
12 MIC Output of the microphone, ampli�ed 51 times
13 IN Inverting Ampli�er Input, maximum gain = 51
14 OUT Ampli�er output, of Pin13
15 PVS Programmable Voltage Output, from 0 to 5 volts.
16 A2 ±5V range Analog Input
17 A1 ±5V range Analog Input
18 GND Ground

Table 1.1: Description of Input/Output Terminals

5

Chapter 2

Hardware Communication

The module expeyes.py contains all the functions required for communicating to the hardware

in addition to some utility functions. The functions are inside a class and the open() function

returns an object of this class if expEYES hardware is detected. After that the function calls

to access expEYES are done using this object, as shown in the example below.

import expeyes.eyesj # import the eyes library

p = expeyes.eyesj.open() # returns an object if hardware is found

print p.get_voltage(1) # print the voltage at input A1

A sample program in C language is given below. This should be compiled and executed.

#include "ejlib.c"

int fd;

int main()

{

byte ss[10];

fd = open_eyesj();

if(fd < 0)

{

fprintf(stderr,"EYES Open Failed\n");

exit(0);

}

if(get_version(ss) != 0) exit(1);

printf(�%s\n�,ss);

}

On error, the Python functions returns None (-1 in the case of time interval measurements). On

success the data is returned. The C functions returns zero on success, en errorcode otherwise.

The data is always returned using the addresses passed to the function by the calling program.

In both Python and C, the functions are given the same names. The main di�erence is in

returning the results. In C, you need to pass an address for that. The function returns only

6

Channel # Name

0 Analog Comparator output
1 A1
2 A2
3 IN1
4 IN2
5 SEN
6 SQR1 readback
7 SQR2 readback
8 SQR1 output
9 SQR1 output
10 OD1 output
11 CCS output control
12 PVS Readback

Table 2.1: Signals and Channel Numbers

the status of the operation. Some of the C functions are mentioned below. It is easier to have

a look at the header �le ejlib.h.

For every function, the Python and C versions are described, but no example code given in C.

Every function communicates to the program running on the micro-controller on the expEYES

Junior board. The hardware communication functions can be broadly grouped into analog

inputs, analog outputs, digital inputs, digital outputs, time interval measurements, waveform

generation etc. For plotting data from expEYES, the python-matplotlib package is used.

The following sections will introduce features of expEYES with examples. The voltages

applied MUST be within the speci�ed limits. A channel number is assigned to identify every

Analog/Digital signal. The function calls uses this number for accessing it.

2.1 Analog Output

The Programmable Voltage Sources (PVS) can be set anywhere between 0 and 5 volts. The

resolution is 12 bits, means the minimum step is 5000/4095, around 1.25 millivolts.

2.1.1 set_voltage()

Set the output voltage of the PVS. The value of V should be in 0 to 5 volts range. The function

returns the actual value set, by reading it back using an ADC input (channel number 12).

print p.set_voltage(2.5) # Sets 2.5 volts on PVS

C function: byte set_voltage(�oat v, �oat* vset); // vset returns the readback of PVS

7

2.2 Digital Inputs (IN1, IN2 and SEN)

You can connect them externally to GND or 5 volts , to make the voltage level HIGH or LOW.

Any voltage less than 1 volt is taken as a LOW or 0. Anything greater than 2.5 volts is treated

as a HIGH or 1. These terminals can also be con�gured as Analog Inputs.

2.2.1 get_state(channel#)

Returns 0 or 1, depending on the voltage level at the input pin

print p.get_state(3) # prints logic level of IN1. IN2 = 4, SEN = 5

print p.get_state(0) # Returns �1� if SEN > 1.25 volts

Channel 0 represents the analog comparator output. The positive input of analog comparator

should be connected to SEN. Negative input is internally connected to 1.25 volts.

One of the powerful feature of digital inputs is the ability to measure the time between level

transitions with microsecond resolution. This will be discussed later.

C function: byte get_state(byte pin, byte *st); // variable st returns 0 or 1.

2.3 Digital Output (OD1)

You can set the voltage level on them to LOW or HIGH volts using software. If you connect

LEDs to them, use a 1KΩ series resistor for current limiting.

2.3.1 set_state(channel#, state)

This function sets the speci�ed channel to state �0� or �1�.

p.set_state(10,1) # Sets OD1 HIGH. Channel number of OD1 is 10

The outputs SQR1 (8) and SQR2 (9) also can behave as digital outputs, provided they are not

con�gured to generate Square or PWM outputs.

C function: byte set_state(byte pin, byte state); // pin is set to 0 or 1, according to the

value of state.

2.4 Analog Inputs (A1,A2,IN1,IN2 & SEN)

The analog inputs A1 and A2 accept voltages between -5 volts and +5 volts. The Inputs IN1,

IN2 and SEN can accept voltages in the 0 to 5 volts range. We can read the voltage level at

any of this inputs, either as single reads or multiple reads in a single function call, normally to

capture a waveform. The time interval between consecutive reads within a capture can be set

with microsecond resolution.

8

2.4.1 get_voltage(channel#)

print p.get_voltage(1) # voltage at A1

print p.get_voltage(2) # voltage at A2

print p.get_voltage(3) # voltage at IN1

print p.get_voltage(4) # voltage at IN2

print p.get_voltage(5) # voltage at SEN

print p.get_voltage(6) # voltage at SQR1 output

print p.get_voltage(7) # voltage at SQR2 output

print p.get_voltage(12) # voltage at PVS output

Connect PVS to A1 using a piece of wire and run the following program several times.

import expeyes.eyesj

p = expeyes.eyesj.open()

v = input('Enter V (0 to 5)')

print p.set_voltage(v) # prints the voltage set on PVS

print p.get_voltage(1) # voltage at A1

If the voltages are in the 0 to 5 volts range, use IN1 or IN2 for better results. The ±5V range

inputs A1 & A2 are converted in to 0 to 5V range using summing junctions. The ampli�ers

used for this will have some gain and o�set errors. The resolution also is halved because of

the doubles total range. The input SEN has a 5k pullup resistor to 5 volts, for connecting

photo-transistors and other resistive sensors .

C function: byte get_voltage(byte ch, �oat* v)

2.4.2 get_voltage_time(channel#)

This function returns the time stamp, from the PC clock, and the voltage in a tuple. This is

useful for data logging applications.

C function: byte get_voltage(byte ch, int* t, �oat* v)

2.4.3 get_voltageNS(channel#)

The get_voltage() function mentioned in the previous section measures the voltage after putting

the micro-controller is SLEEP mode, for better accuracy. This will stop waveforms set on SQR1

& SQR2. If that is not accepatble for a particular experiment, one can use this function.

print p.get_voltageNS(1) # voltage at A1

C function: byte get_voltageNS(byte ch, �oat* v)

9

2.4.4 capture(ch, NP, tg)

The argument ch is the input channel number, NP is the number of measurements and tg is the

time between two measurements in microseconds. Two lists containing the time (milliseconds)

and voltage (volts) coordinates are returned by this function. Capture calls return analog data

with 8 bit resolution. Maximum value of NP is 1800, limited by the micro-controller RAM

available.

The minimum value of 'tg' is 4 microseconds. The value of 'tg' is decided by the frequency

of the signal to be captured. For example, one cycle of a 1kHz sine wave is 1000 microseconds.

A tg of 20 will give 50 data points per cycle.

Connect SINE to A1 and run the following program.

from pylab import *

import expeyes.eyesj

p = expeyes.eyesj.open()

t,v = p.capture(1,300,100)

plot(t,v) # from pylab

show() # from pylab

Terminal Channel # Range(V)

A1 1 -5 to +5

A2 2 -5 to +5

IN1 3 0 to 5

IN2 4 0 to 5

SEN 5 0 to 5

SQR1(read) 6 0 to 5

SQR2(read) 7 0 to 5

If the voltage to be measured is in the 0 to 5V range, use IN1 or IN2, for a better resolution. The

SEN input has a 5kΩ pullup resistor to 5V supply. We can calculate the value of a resistance

connected from SEN to GND, from the measured voltage, using Ohm's law.

C function: byte capture(int ch, int ns, int tg, �oat* data);

The variable data returns an array of 2*ns �oat type elements, �rst ns time coordinates

and after that ns voltage coordinates. It is the responsibility of the calling program to pass the

address of an array having su�cient size. capture_hr() also returns data in the same format.

2.4.5 capture2, capture3 & capture4

These functions captures multiple channels together, with timing correlation. The maximum

value of NP for capture4 = 1800/4 = 450. The minimum value of 'tg' is 4 microseconds per

channel, capture4 should have a minimum tg of 16.

t1,v1,t2,v2 = capture2(ch1, ch2, NP, tg)

10

t1,v1,t2,v2 = capture2_hr(ch1, ch2, NP, tg)

t1,v1,t2,v2,t3,v3 = capture3(ch1, ch2, ch3, NP, tg)

t1,v1,t2,v2,t3,v3,t4,v4 = capture4(ch1, ch2, ch3, ch4, NP, tg)

C function: byte capture2(int ch1, int ch2, int ns, int tg, �oat* data);

The variable data returns an arrays of 2(2*ns) �oat type elements. First (2*ns) are the

time and voltage values for channel 1 and the next (2*ns) for channel 2. Function capture3 and

capture4 also returns data in a similar manner.

2.4.6 capture_hr(ch, NP, tg), capture2_hr(ch1, ch2, NP, tg)

These two functions captures data with higher resolution (12 bits). In this case each value

takes 2 bytes and the maximum value of NP is 900 for capture_hr, and 450 for capture2_hr.

High resolution version is NOT available for capture3 and capture4.

t1,v1 = capture_hr(ch1, 900, 10)

t1,v1,t2,v2 = capture2_hr(ch1, ch2, 450, 20)

plot(t1,v1, t2,v2)

show()

We can �nd out the amplitude and frequency of the input waveform by mathematically �tting

the captured data to the equation of a sine waveV = V0 sin (2πft+ θ) +C . By capturing 4 to

5 cycles, the frequency can be obtained within 0.1% error.

2.5 Capture modi�ers

When a periodic wave form is captured, the starting point could be at any voltage, within the

minimum and maximum voltage. To implement an oscilloscope, we need to make sure that the

starting point is always same, else the trace will be jumping around. This is a simple example

of a capture modi�er. expEYES implements several other types of capture modi�ers to enhance

the functionality of the capture functions. The basic idea is to perform some action just before

starting the waveform capture. The important types of modi�ers (or actions) are

• Analog Trigger on any input channel, trigger level can be set by the user.

• Wait for HIGH, LOW, Falling Edge or Rising Edge on Inputs IN1, IN2, SEN, SQR1 or

SQR2

• Set, Clear or send Pulse one of the Digital Outputs, mainly OD1. SQR1 & SQR2 also

will act as digital outputs if frequency is set to zero.

enable_action(action, Selected I/O) is the function call for registering actions. They will

be valid on subsequent capture calls. Calling disable_actions() removes all registered actions

and capture goes back to its default state of analog triggering on the captured channel. For

convenience, we have de�ned more functions that internally call the function enable_action()

11

Action Code Description

AANATRIG 0 Trigger on analog input level
ASET 1 Makes the speci�ed Output HIGH
ACLR 2 Makes the speci�ed Output LOW

APULSEHT 3 Send High True Pulse on Output
APULSELT 4 Send Low True Pulse on Output
AWAITHI 5 Wait for HIGH level on speci�ed Input
AWAITLO 6 Wait for LOW level on speci�ed Input
AWAITRISE 7 Wait for Rising Edge on speci�ed Input
AWAITFALL 8 Wait for Falling Edge on speci�ed Input

Table 2.2: Capture Modi�ers

2.5.1 set_trigger(trigval)

Sets the analog voltage trigger level, for the capture function. If the speci�ed voltage value

is not found at the input, within the timeout period, the capture is done ignoring the trigger

condition.

p.set_trigger(2048) # 0 to 4095 is the analog range

2.5.2 set_trigsource(channel#)

The Input source to be used for analog level triggering. It need not be the one that is captured.

The example code below demonstrates the e�ect of this function. Connect SINE to A1 before

running.

from pylab import *

import expeyes.eyesj

p = expeyes.eyesj.open()

ts = 1 # run the program by changing this to 2

p.set_trig_source(ts)

t,v = p.capture(1,300,50)

plot(t,v)

t,v = p.capture(1,300,50)

plot(t,v)

show()

The traces will not overlap if the trigger source is set to some other channel, provided there is

no time correlation between the two inputs.

C function: byte set_trig_source(byte ch);

12

2.5.3 enable_wait_high(channel#), ..._low(...), ..._falling(...), ..._ris-

ing(...)

Calling this function makes all the subsequent capture calls to wait for a HIGH / LOW /

rising edge/ falling edge, on the speci�ed input before starting the digitization.

p.enable_action(1, 11) # Start CCS before capturing

p.enable_wait_rising(3) # wait for a rising edge on IN1

p.disable_actions() # removes all modifiers

C function: byte enable_wait_high(byte ch);

2.5.4 enable_set_high(channel#), ..._low(...), ..._pulse_high(...), ..._low(...)

In some applications, it would be necessary to make a digital output high/low or send a pulse,

width set by another function, with before digitization starts. Capturing the voltage across a

capacitor while charging / discharging is a typical application of this feature. Connect a 1uF

capacitor between A1 and GND. Connect a 1KΩ resistor from OD1 to A1 and run the following

code.

from pylab import *

import expeyes.eyesj

p = expeyes.eyesj.open()

p.set_state(10,1) # Take OD1 HIGH

p.enable_set_low(10) # OD1 go LOW before capture

t,v = p.capture(1,200,20)

plot(t,v)

show()

C function: byte enable_set_high(byte ch);

2.5.5 set_pulsewidth(width)

Sets the width of the pulse that is send on the digital outputs before capturing, in microseconds,

up to 250.

p.set_pulsewidth(100) # sets the pulsewidth

C function: byte set_pulsewidth(u16 width);

13

2.6 Waveform Generation

ExpEYES can generate square waves on SQR1 and SQR2. The frequency can vary from 0.7 Hz

to 100 kHz. All intermediate values are NOT possible since the output is generated by timers

and comparators. The function returns the actual values set, closest possible to the requested.

Output SQR1 has a 100Ω series resistor for current limiting, but SQR2 is directly connected.

2.6.1 set_sqr1(freq), set_sqr2(freq)

Generates a square waveform, having 50% duty cycle, on SQR1/SQR2. SQR1 has a 100Ω series

resistor on it. Setting freq = 0 will make the output HIGH and setting freq = -1 will make

it LOW. Both these cases disables the Timer/Counter and con�gures it as a normal digital

output.

import expeyes.eyesj

p = expeyes.eyesj.open()

print p.set_sqr1(1000)

C function: byte set_sqr1(�oat freq, �oat *fset);

The desired value is speci�ed in 'freq', after the call 'fset' will contain the actual frequency

set.

2.6.2 set_sqrs(freq, phase shift in percent)

Generates a square waveform of same frequency on both SQR1 and SQR2. The phase shift

between the two can be set in percentage of the Time Period.

p.set_sqrs(1000,50) # Two out of phase waveforms

C function: byte set_sqrs(�oat freq, �oat di�, �oat *fset);

2.6.3 set_sqr1_pwm(dutycycle), set_sqr2_pwm(dutycycle)

SQR1 and SQR2 can be con�gured for making Pulse Width Modulated waveform. The duty

cycle is speci�ed in percentage. The frequency is 488Hz by default, because the second argument

is set to 14 by default. This is the index of counter's bit which triggers the PWM. Specifying

the second argument can be used for changing the frequency. Reducing it by 1 will double the

frequency and increasing by 1 will halve it.

print p.set_sqr1_pwm(20) # 488Hz, 20% duty cycle

print p.set_sqr1_pwm(50, 15) # 244Hz, 50% duty cycle

print p.set_sqr1_pwm(50, 13) # 976Hz, 50% duty cycle

C function: byte set_sqr1_pwm(byte dc);

14

2.6.4 set_sqr1_dc(voltage), set_sqr2_dc(voltage)

SQR1 and SQR2 can be con�gured to generate a DC voltage, by external �ltering, from a

PWM waveform. The voltage, 0 to 5V range, is speci�ed as the argument.

print p.set_sqr1_dc(2) # 7.8 kHz, 40% duty cycle

Filtering the waveform generates a DC voltage. Connect 10k from SQR1 to IN1 and 100uF

from IN1 to GND.

print p.get_voltage(3) # voltage at IN1

The output voltage depends on the supply voltage provided by USB. Setting 3 volts means

only setting 60% of the supply voltage. The readout from IN1 will give the correct value.

C function: byte set_sqr1_dc(�oat volt)

2.6.5 get_frequency(pin)

Measure the frequency of a 0 to 5V square wave connected to IN1, IN2 or SEN. You can also

measure the frequency of SQR1 & SQR2 outputs from channels 6 and 7 respectively. Connect

SQR1 to IN1 and run the following code

import expeyes.eyesj

p = expeyes.eyesj.open()

p.set_sqr1(1000)

print p.get_frequency(3) # frequency of squarewave at IN1

print p.get_frequency(6) # frequency of SQR1, same as above

C function: byte get_frequency(byte pin, �oat *fr)

2.7 Infrared Transmission

The SQR1 output supports two types of 38kHz infrared transmission protocol. One is a non-

standard 1 byte transmission, that can be received by another program running on an AT-

mega32 micro-controller. This can be used for controlling some device from expEYES junior.

2.7.1 irsend1(byte)

Sends the byte over SQR1. Just connect an IR LED from SQR1 to GND and issue the command.

To signify a start 38kHz is kept on for 9000 microseconds followed by a silence of 4400

microseconds. After that 38kHz is kept ON for 680 usec followed by (a) silence of 1560 usecs

to transmit a 1 and 440 usecs to transmit a 0. This process is repeated 8 times, starting with

the MSB of the byte to be transmitted. The sequence ends by transmitting a 340 usecs long

burst again. This is received by a program1 given on the website.

1http://expeyes.in/sites/default/files/debs/recv.c

15

2.7.2 irsend4(byte, byte, byte, byte)

The Start and End are identical to irsend1() but instead of 1 byte, 4 bytes are sent in a single

transmission. If the numbers are chosen properly, you can control TVs or other instruments

using this.

2.8 Passive Time Interval Measurements

Digital Inputs can be used for measuring time intervals between level transitions on the digital

inputs with microsecond resolution. The transitions de�ning the start and �nish could be on

the same terminal or on di�erent ones.

2.8.1 r2ftime(pin1, pin2) , f2rtime(pin1, pin2)

r2ftime returns delay in microseconds from a rising edge on pin1 to a falling edge on pin2, the

channel numbers corresponding to the inputs should be given as the arguments. The pins could

be same or distinct. Similarly f2rtime() measures time from a falling edge to a rising edge.

Connect SQR1 to IN1 and run the following code, should print around 500 usecs.

import expeyes.eyesj

p = expeyes.eyesj.open()

p.set_sqr1(1000) # 1kHz, T=1msec. half period = 500 usecs

print p.r2ftime(3,3)

C function: byte r2ftime(byte pin1, byte pin2, �oat *ti)

2.8.2 r2rtime(pin1, pin2), f2ftime(pin1, pin2)

r2rtime returns delay in microseconds from a rising edge to rising edge. The pins should NOT

be the same. The following code shows how to use this for measuring delay between two

transitions.

import expeyes.eyesj

p = expeyes.eyesj.open()

p.set_sqrs(1000, 25) # 1000Hz on both SQR1 & 2. Delay by 25%, 250us

print p.r2rtime(6,7) # Channels 6 & 7 are readback of SQR1 and SQR2

16

2.8.3 multi_r2rtime(channel#,skip_edges)

Measures time interval between two rising edges of a waveform applied to a digital input. The

second argument is the number of rising edges to be skipped between the two measured rising

edges. This way we can decide the number of cycles to be measured.

Connect SQ1to IN1 and run the following code.

import expeyes.eyesj

p = expeyes.eyesj.open()

p.set_sqr1(1000)

a = p.multi_r2rtime(3) # time for 1 cycle in usecs

b = p.multi_r2rtime(3,9) # time for 10 cycles in usecs

print 10.0e6/a # frequency in Hz

For a periodic waveform input, the fourth line of the program returns the time for one cycle

and the �fth one returns the time for 10 cycles (9 rising edges in between skipped). This call

can be used for frequency measurement. The accuracy can be improved by measuring larges

number of cycles.

C function: byte multi_r2rtime(byte pin, byte skip, �oat *ti)

2.9 Active Time Interval Measurements

During some experiments, we need to initiate some action and measure the time interval to the

result of of that action. These functions are used in experiments like gravity by time of �ight

and velocity of sound using ultrasound piezo discs.

2.9.0.1 set2rtime (Digital Output, Digital Input)

This makes the speci�ed Digital Output HIGH and waits for a HIGH on the Digital Input.

Connect a 1k resistor from OD1 to IN1 and a 1uF capacitor from IN1 to GND.

p.set2rtime(10, 3)

2.9.0.2 htpulse2rtime(Digital output, Digital Input)

int htpulse2rtime(out, in)

Sends out a single High True pulse on out (SQR1, SQR2 or OD1) and waits for a rising/falling

edge on in (IN1, IN2 or SEN). The duration of the pulse is set by set_pulsewidth(). On

powerup the width is 13 microseconds. The initial level of out should be set according to the

kind of pulse.

Similarly we have htpulse2ftime(), ltpulse2rtime() and ltpulse2ftime().

17

p.set_pulse_width(1)

print p.htpulse2rtime(10, 3)

measures the time from a 1usec wide High True pulse on OD1 to a rising edge on IN1.

2.9.0.3 set_pulse_width(width)

Sets the pulse width, in microseconds, to be used by the htpulse2rtime(), htpulse2ftime(),

ltpulse2rtime(), ltpulse2ftime() functions.

p.set_pulse_width(10)

2.10 1mA Current Source

The 1mA constant current can be switched ON or OFF by channel number 11, as shown below

p.set_state(11, 1) # switch on CCS

We can plot the linear charging of a 1uF capacitor by conecting it between CCS and GND, and

running the following code. Connect CCS to IN1 for voltage measurement.

from pylab import *

import expeyes.eyesj, time

p = expeyes.eyesj.open()

p.set_state(11,0) # switch of CCS

time.sleep(1) # wait for discharge

p.enable_set_high(11) # enable CCS just before capture

t1,v1= p.capture_hr(3,500,10)

plot(t1,v1)

show()

2.11 Capacitance measurements

The IN1 pin can be used for measuring capacitance, ranging from hundred to several thousand

pico Farads. This is done using an internal programmable constant current source.

2.11.1 measure_cap()

Connect the capacitor between IN1 and ground and run the function measure_cap().

import expeyes.eyesj

p = expeyes.eyesj.open()

print p.measure_cap()

18

The capacitance is measured by charging the capacitor with a 5.5 uA constant current source

for a �xed duration. The total charge is given by Q = It = CV. If V,I and t are known, C can

be calculated. The value of the current source may vary from 5.5 uA and the empty socket,

along with tracks, also has some capacitance. These error are taken can by calibrating it using

a known capacitor. The error factors are stored in EEPROM of the micro-controller.

2.11.2 measure_cv(channel, duration, current)

This is a more �exible version of measure_cap, allowing to set the current source on IN1 or

IN2. The current source is activated for 'duration' microseconds. The last argument could be

.55, 5.5, 55 or 550 microamps. The function returns the voltage at the selected input after

applying the current for the speci�ed duration.

Depending on the value of the capacitor connected, we need to select duration and current

such that the voltage developed is between 2 to 4 volts for good results. Connect a 330 pF

capacitor from IN1 to GND and run the following code.

import expeyes.eyesj

p = expeyes.eyesj.open()

print p.measure_cv(3, 200, 5.5) # result was 3.017 volts

The capacitance can be calculated using the expressions Q =CV and Q = I*t. C =I*t/v =

5.5*200/3.017 = 364 pF. Subtracting the Stray capacitance 32pF gives a result of 332pF.

2.11.3 set_current(channel, current)

This function enables the internal current source on IN1 or IN2. This Constant Current Source

may be used for measuring the current with some other device. The voltage readback is not

working as expected. Using an ammeter connected from IN1 to ground, it is found that the

current is 5.5 uA , 47 uA and 450 uA, somewhat less than the speci�cation, in higher ranges.

2.12 Resistance Measurements

The SEN input is internally connected to 5 volts through a 5100Ω resistor. It is possible to

calculate the value of a resistor connected from SEN to GND using Ohm's law. However, the

internal resistor may not be exactly 5100 due to component tolerance.

2.12.1 measure_res()

The input SEN is connected to 5 volts internally through a 5100 Ohm resistor. Connecting an

external resistor from SEN to GND makes a potential divider. It is possible to calculate the

value of the resistor connected using Ohm's law.

This function returns the value of a resistance connected from SEN to GND, calculated

using the equation

19

Rext = Rint ∗ V SEN/(5.0 − VSEN)

2.13 Disk Writing

2.13.1 save_data

Input data is of the form, [[x1,y1], [x2,y2],....] where x and y are vectors, are save to a text

�le.

Save the data returned by the capture functions into a text �le. Default �lename is `plot.dat',

that can be overriden by the second argument. Connect SINE to A1 and run the following code.

import expeyes.eyesj

p = expeyes.eyesj.open()

t,v = p.capture(1, 200, 100)

p.save([[t,v]], 'sine.dat')

open the �le using the command

$xmgrace sine.dat

20

Chapter 3

Data processing

The data acquired from expEYES hardware is analyzed using various mathematical techniques

like least-square �tting, Fourier transform etc. The module named eyemath.py does this with

the help of functions from the 'scipy' package. Most of the functions accepts the data format

returned by capture functions.

3.0.2 �t_sine

Accepts two vectors [x] and [y] and tries to do a least-square �tting of the data with the equation

A sin (2πft+ θ) +C. Returns the �tted data and the parameter list[A, f, θ, C]. Connect SINE

to A1 and run the following code.

from pylab import *

import expeyes.eyesj, expeyes.eyemath as em

p = expeyes.eyesj.open()

t,v= p.capture(1,400,100)

vfit, par = em.fit_sine(t,v)

print par # A, f, θ, C

plot(t,v) # The raw data

plot(t,vfit) # data calculated from par

show()

par[1] is frequency in kHz, since the time is given in milliseconds.

3.0.3 �t_dsine

Accepts two vectors [x] and [y] and tries to do a least-square �tting of the data with the

equation A = A0 sin (2πft+ θ) × exp(−dt) + C. Returns the �tted data and the parameter

list[A, f, θ, C, d]. par[1] is frequency in kHz, since the time is given in milliseconds and 'd' is

the damping factor.

21

3.0.4 �t_exp

Accepts two vectors [x] and [y] and tries to do a least-square �tting of the data with the equation

A = A0 exp (kt) + C. Returns the �tted data and the parameter list[A, k, C]. Connect a 1uF

capacitor from A1 to GND, 1kΩ resistor from OD1 to A1 and run the following code.

from pylab import *

import expeyes.eyesj, expeyes.eyemath as em

p = expeyes.eyesj.open()

p.set_state(10,1) # Take OD1 HIGH

p.enable_set_low(10) # OD1 go LOW before capture

t,v = p.capture(1,200,20)

plot(t,v)

vfit, par = em.fit_exp(t,v)

print par

plot(t,v) # The raw data

plot(t,vfit) # data calculated from par

show()

-(1/par[1]) is the time constant RC in seconds.

3.0.4.1 �t

Does a Fourier transform of a given data set. The sampling interval in milliseconds is the

second argument. Returns the frequency spectrum, ie. the relative strength of each frequency

component. Connect SINE to A1 and run the following code.

from pylab import *

import expeyes.eyesj, expeyes.eyemath as em

ns = 1000 # number of points to be captured

tg = 100 # time between reads in usecs

p = expeyes.eyesj.open()

t,v= p.capture(1, ns, tg)

x,y = em.fft(v, tg * 0.001) # tg in millisecs

plot(t,v) # The raw data

plot(x,y) # data calculated from par

show()

The frequency spectrum should feature a peak at frequency f=150Hz. A small peak at frequency

2f may be visible.

Modify this program to show the frequency spectrum of a square wave.

22

Chapter 4

Experiments

Most of the experiments described in the user manual can be done by writing few lines of

Python code.

4.1 Transient response of LC circuit

Connect inductor from OD1 to A1, capacitor from A1 to GND.

NP = 200 # number of readings

tg = 10 # time gap between them, keep NP*tg around 3*RC

from pylab import *

import expeyes.eyesj, expeyes.eyemath as em

p = expeyes.eyesj.open()

p.set_state(10,1)

p.enable_set_low(10) # OD1 go LOW before capture

t,v = p.capture_hr(1,NP,tg) # choose NP*tg according to time constant

plot(t,v)

vf, par = em.fit_exp(t,v) # exponential fit

plot(t, vf,'r')

print abs(1./par[1]) # print RC value

show()

23

