
Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

Lib3MF

Open Source Toolkit for the 3D Manufacturing Format

Version 1.8.1

Status Released

THESE MATERIALS ARE PROVIDED “AS IS.” The contributors expressly disclaim any warranties (express, implied, or otherwise),

including implied warranties of merchantability, non-infringement, fitness for a particular purpose, or title, related to the

materials. The entire risk as to implementing or otherwise using the materials is assumed by the implementer and user. IN NO

EVENT WILL ANY MEMBER BE LIABLE TO ANY OTHER PARTY FOR LOST PROFITS OR ANY FORM OF INDIRECT, SPECIAL, INCIDENTAL,

OR CONSEQUENTIAL DAMAGES OF ANY CHARACTER FROM ANY CAUSES OF ACTION OF ANY KIND WITH RESPECT TO THIS

DELIVERABLE OR ITS GOVERNING AGREEMENT, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE),

OR OTHERWISE, AND WHETHER OR NOT THE OTHER MEMBER HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2

Version 1.0.0 1/8/2019 9:34:00 AM

Contents
About this Library ...2

General Architecture ..3

Versioning ..4

Examples ...5

COM Interfaces ..6

1.1. Plain C Interfaces...7

1.2. Class Reference – Core Specification ..8

1.3. Class Reference – BeamLattice specification ... 26

1.4. Class Reference – Slice-specification .. 29

License ... 31

Contributors ... 32

Open API Points and Roadmap ... 32

About this Library

Lib3MF is a C++ implementation of the 3D Manufacturing Format file standard.

As 3MF shall become an universal 3D Printing standard, its quick adoption is very important. This library

shall lower all barriers of adoption to any possible user, let it be software providers, hardware providers,

service providers or middleware tools.

Its aim is to offer an open source way to integrate 3MF reading and writing capabilities, as well as

conversion and validation tools for input and output data. The 3MF Library shall provide a clean and

easy-to-use API to speed up the development and keep integration costs at a minimum.

While the current code is primarily made for a Microsoft Visual Studio Environment, a lot of energy has

been put into keeping it as platform independent as far as possible. For example, it compiles well with

the GCC compiler, but there is some work left to recode a few platform specific functionalities, which

are now covered by the WinRT platform (like XML parsing and ZIP compression). As described below, we

are looking for contributors with extensive experience in this field.

To understand this documentation in full extent, it is important to have taken a look at the 3MF

specification 1.*, available for free at https://github.com/3MFConsortium/spec_core.

For the source code of the library code, please visit https://github.com/3MFConsortium/lib3mf.

Example code can be found at https://github.com/3MFConsortium/lib3mf-examples.

For any issues, hints, feedback or contributions, please use the issues tab on

https://github.com/3MFConsortium/lib3mf/issues.

https://github.com/3MFConsortium/spec_core
https://github.com/3MFConsortium/lib3mf
https://github.com/3MFConsortium/lib3mf-examples
https://github.com/3MFConsortium/lib3mf/issues

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

General Architecture

The 3MF library API compiles into two different flavours, which are basically just bindings to the same

class model:

(1) A COM-like DLL Interface, which exposes the same API as the COM Interface, but comes without

the need for global CLSID registration. This allows to link the library natively to many

unmanaged object-oriented languages (e.g. C++ or Delphi)

(2) A plain C Interface, which wraps the class structure of the API into pseudo-object-oriented. This

works very well for C programs and other low level languages, as well as other operating

systems.

In the first releases, the DLLs are only compiling in Microsoft Windows. Porting it to other platforms is

planned. More information can be found in the corresponding headers in

(1) Include/Model/COM/NMR_COMInterfaces.h

(2) Include/Model/COM/NMR_COMFactory.h

(3) Include/Model/COM/NMR_DLLInterfaces.h

4

Version 1.0.0 1/8/2019 9:34:00 AM

Versioning

The lib3MF library contains an internal version number, which should be checked by the consuming

program when loading it (see Example applications).

Lib3MF follows a common, hierarchical schema for versioning:

lib3MF.major.minor.mirco.buildnumber

To identify lib3MF’s version under windows, look for “File version” in DLL’s details.

Both examples are for version 1.1.3, build 233 of lib3MF.

Lib3MF’s API is stable in the following way:

- Lib3MF-libraries with different major version are not guaranteed to be compatible.

- Lib3MF-libraries with matching major version and different minor versions are backwards

compatible:

A consumer who compiled against the API of version A.B can safely use the binary of version A.C

for C>=B.

I.e., functions will not be removed within the range of a constant major version.

- Lib3MF-libraries with matching values of both major and minor version have an identical API.

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

Under Unix use a tool like objdumd to find out the so-name:

This corresponds to the major version of the lib3MF. To find out the minor or micro version, use the

GetInterfaceVersion-function of the library described below.

Examples

Currently, there are several examples which show how to use the library:

• Cube: a simple example how to create an empty 3MF document and add custom geometry to it.

• Converter: a simple program to convert 3MFs into (binary) STLs and back.

• Components: explains component handling in 3MF

• ExtractInfo: shows how to import a 3MF and navigate through the in memory representation of

the model.

• TextureCube: demonstrates the handling of texures in 3MF and shows the usage of the progress

callback of lib3MF.

Please note, that you might need a proper understanding of the 3MF Specification in order to get the

most out of the example code.

6

Version 1.0.0 1/8/2019 9:34:00 AM

COM Interfaces

For the 3MF Core spec, the following interfaces specify an in memory representation of the 3MF

Document. For a detailed description, please refer to Include/Model/COM/NMR_COMInterfaces.h.

Interface derived from Description
ILib3MFBase IUnknown ILib3MFBase is a base

interface, which serves as
parent for all interfaces
related to the 3MF Library

ILib3MFModelWriter ILib3MFBase ILib3MFModelWriter
encapsulates a writer class
for writing the model into a
specific file type.

ILib3MFModelReader ILib3MFBase ILib3MFModelReader
encapsulates a reader class
for reading a model from a
specific file type.

ILib3MFModelResource ILib3MFBase ILib3MFModelResource is a
base interface for all 3MF
Resources.

ILib3MFModelResourceIterator ILib3MFBase ILib3MFModelResourceIterator
is a helper class to iterate
through arbitrary lists of
3MF resources

ILib3MFPropertyHandler ILib3MFBase ILib3MFPropertyHandler
encapsulates all methods for
handling 3MF mesh properties.

ILib3MFDefaultPropertyHandler ILib3MFBase ILib3MFDefaultPropertyHandler
encapsulates all methods for
handling 3MF default object
properties.

ILib3MFModelBaseMaterial ILib3MFModelResource ILib3MFModelBaseMaterial
implements the Base Material
Group Resources of a 3MF
model stream, and allows
direct access to the base
material information

ILib3MFModelAttachment ILib3MFBase ILib3MFModelAttachment
implements the Model
Attachments of a 3MF model
stream, and allows direct
access to direct binary data.

ILib3MFModelTexture2D ILib3MFModelResource ILib3MFModelTexture2D
implements the Texture2D
Resources of a 3MF model
stream, and allows direct
access to the texture
properties and the image
data.

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

ILib3MFModelMeshObject ILib3MFModelObjectResource ILib3MFModelMeshObject
encapsulates all methods for
handling 3MF mesh objects.

ILib3MFModelComponent ILib3MFBase ILib3MFModelComponent
encapsulates one component
node of a 3MF component
object.

ILib3MFModelComponentsObject ILib3MFModelObjectResource ILib3MFModelComponentsObject
encapsulates all methods for
handling 3MF component
objects.

ILib3MFModelBuildItem ILib3MFBase ILib3MFModelBuildItem
encapsulates all methods for
handling 3MF build items.

ILib3MFModelBuildItemIterator ILib3MFBase ILib3MFModelBuildItemIterator
is a helper class to iterate
through arbitrary lists of
3MF build items.

ILib3MFModel ILib3MFBase ILib3MFModel is the basic
instance owning all In-Memory
elements of a 3MF file.

ILib3MFModelFactory ILib3MFBase ILib3MFModelFactory is a
factory interface for
ILib3MFModel

ILib3MFModelMeshBeamSet ILib3MFBase ILib3MFModelMeshBeamSet is a
class that holds the
references that contain to a
beamset. It is part of the
beamlattice extension to 3MF.

ILib3MFSlice ILib3MFBase ILib3MFSlice encapsulates all
slice functionality for
handling slices in 3mf

ILib3MFSliceStack ILib3MFBase ILib3MFSliceStack
encapsulates all methods for
handling slice stacks in 3MF

1.1. Plain C Interfaces

In order to address a wider user base, the object-oriented interfaces above are also compiled into a DLL

for emulating pseudo objects in a procedural language. There are very valid use cases for it.

Please note, that this wrapper is a lot less type-safe than the COM interface.

Example: The following code in COM

pModel->QueryWriter („3mf“, &pModelWriter);

will be translated into

8

Version 1.0.0 1/8/2019 9:34:00 AM

lib3mf_model_querywriter (pModel, „3mf“, &pModelWriter);

Moreover, the following type/interface in COM

LIB3MFINTERFACE(ILib3MFModel, ILib3MFBase, CLSID_Lib3MF_Model)

is translated to

typedef PLib3MFBase PLib3MFModel;

All these translations follow the same pattern. For more information, please compare the corresponding

header files

(1) Include/Model/COM/NMR_DLLInterfaces.h

(2) Include/Model/COM/NMR_COMInterfaces.h

1.2. Class Reference – Core Specification

The following list shall give a short class overview of the library. The interfaces are all defined centrally

in one header file. Please read Include/Model/COM/NMR_COMInterfaces.h for all details.

All Methods return a HRESULT defining the success of the operation. A successful operation always

returns 0 (S_OK), and a windows error code otherwise. If no success is returned, the output parameters

might be in an undefined state.

1. ILib3MFBase

ILib3MFBase is a base interface, which serves as parent for all interfaces related to the 3MF Library.

Parent interface: IUnknown

Method Parameters Description
GetLastError DWORD* pErrorCode: returns error code

LPCSTR pErrorMessage: Returns pointer to the error
message string, NULL if no error.

Returns detailed information of the
last known error an object method.
The error information is available for
every method returning a
LIB3MF_FAILED constant.

2. ILib3MFModelWriter

ILib3MFModelWriter encapsulates a writer class for a writing the model into a specific file type. Current

implementations include (binary) STL and 3MF.

Parent interface: ILib3MFBase

Method Parameters Description

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

WriteToFile LPCWSTR pwszFilename: Filename to write into
(UTF16 encoded)

Writes out the model as file. The file
type is specified by the Model
Writer class

WriteToFileUTF8 LPCSTR pwszFilename: Filename to write into (UTF8
encoded)

Writes out the model as file. The file
type is specified by the Model
Writer class

WriteToStream IStream* pStream: IStream to write into Writes out the model into a COM
IStream. Only available on Windows.

WriteToCallback

void* pWriteCallback: Callback to call for writing a
data chunk.
void* pSeekCallback: Callback for seeking in the
write data stream.
void* pUserData: Userdata that is passed to the
callback function

Writes out the model and passes the
data to a provided callback function.
The file type is specified by the
Model Writer class

SetProgressCallback void* callback: pointer to the callback function. If
the callback returns "false" the original function call will
be aborted and set the error NMR_USERABORTED.
void* userData: pointer to arbitrary user data that is
passed without modification to the callback.

Set the progress callback for calls to
this writer

3. ILib3MFModelReader

ILib3MFModelReader encapsulates a reader class for reading a model from a specific file type. Current

implementations include (binary) STL and 3MF.

Parent interface: ILib3MFBase

Method Parameters Description
ReadFromFile LPCWSTR pwszFilename: Filename to read from Reads a model from a file. The file

type is specified by the Model
Reader class.

ReadFromFileUTF8 LPCSTR pszFilename: Filename to read from as
UTF8 string

Reads a model from a file. The file
type is specified by the Model
Reader class.

ReadFromStream IStream* pStream: IStream to read from Reads a model from a COM
IStream. Only available on
Windows.

GetWarningCount DWORD* pnWarningCount: filled with the count of
the occurred warnings.

Returns warning and error count of
the read process.

GetWarning DWORD nIndex: Index of the Warning. Valid values are
0 to WarningCount – 1.
DWORD* pErrorCode: filled with the error code of the
warning
LPWSTR pwszBuffer: filled with the error message,
may be NULL

Returns warning and error
information of the read process

10

Version 1.0.0 1/8/2019 9:34:00 AM

DWORD cbBufferSize: size of pwszBuffer (including
trailing 0).
DWORD* pcbNeededChars: filled with the count of
the written bytes, or needed buffer size.

GetWarningUTF8 DWORD nIndex: Index of the Warning. Valid values are
0 to WarningCount – 1.
DWORD* pErrorCode: filled with the error code of the
warning
LPSTR pszBuffer: filled with the error message, may
be NULL
DWORD cbBufferSize: size of pwszBuffer (including
trailing 0).
DWORD* pcbNeededChars: filled with the count of
the written bytes, or needed buffer size.

Returns warning and error
information of the read process
(UTF8)

SetStrictModeActive BOOL bStrictModeActive: flag whether strict mode
is active or not.

Activates (deactivates) the strict
mode of the reader.
If active, all warnings are reported
as errors. Otherwise, they are
reported as warnings. By default, it
is deactivated.

GetStrictModeActive BOOL* pbStrictModeActive: flag whether strict
mode is active or not.

Queries the whether the strict
mode of the reader is active or not

SetProgressCallback void* callback: pointer to the callback function. If
the callback returns "false" the original function call will
be aborted and set the error NMR_USERABORTED.
void* userData: pointer to arbitrary user data that
is passed without modification to the callback.

Set the progress callback for calls to
this reader

4. ILib3MFModelResource

ILib3MFModelResource is a base interface for all 3MF Resources.

Parent interface: ILib3MFBase

Method Parameters Description
GetResourceID DWORD* pnResourceID: Filled with the ID of the

Resource Instance

Retrieves the ID of a Model Resource
Instance

5. ILib3MFModelResourceIterator

ILib3MFModelResourceIterator is a helper class to iterate through arbitrary lists of 3MF resources.

Parent interface: ILib3MFBase

Method Parameters Description
MoveNext BOOL* pbHasNext: returns, if there is a resource to use

Iterates to the next resource in the
list.

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

MovePrevious BOOL* pbHasPrevious: returns, if there is a resource to

use

Iterates to the previous resource in
the list.

GetCurrent ILib3MFModelResource** ppResourceInstance:
returns the resource instance

Returns the resource the iterator
points at.

Clone ILib3MFModelResourceIterator** ppIterator:
returns the cloned Iterator instance

Creates a new resource iterator with
the same resource list.

6. ILib3MFPropertyHandler

ILib3MFPropertyHandler encapsulates all methods for handling 3MF mesh properties.

Parent interface: ILib3MFBase

Method Parameters Description
RemoveProperty DWORD nIndex: Index of the triangle (0-based) Removes all properties of a

specific triangle.
RemoveAllProperties - Removes all properties of the

triangle mesh.
GetPropertyType DWORD nIndex: Index of the triangle (0-based)

eModelPropertyType* pnPropertyType: Returns the
property type of the triangle

Returns the property type of
the specific triangle

GetBaseMaterial DWORD nIndex: Index of the triangle (0-based)
ModelResourceID* pnMaterialGroupID: returns
the material group id, per triangle. A return group id of
0 means either no property at all or a non-material
property.
ModelResourceIndex* pnMaterialIndex: returns
the material index, per triangle. Returns 0, if no base
material is assigned.

Returns the base material of a
specific triangle.

GetBaseMaterialArray ModelResourceID* pnMaterialGroupIDs: will be
filled with the material group ids of the triangles. Array
must have trianglecount entries. A return group id of 0
means either no property at all or a non-material
property.
ModelResourceIndex* pnMaterialIndices: will
be filled with the material group indices of the
triangles. Array must have trianglecount entries.

Returns the base materials of
all triangles. If a triangle
property is not a material, the
returned material group ID will
be 0.

SetBaseMaterial DWORD nIndex: Index of the triangle (0-based)
ModelResourceID nMaterialGroupID: Group ID of
the Material Group
ModelResourceIndex nMaterialIndex: Index of
the Material in the Group

Sets the material of a triangle
to a specific single value. All
other Triangle properties are
removed. This must be a base
material .

SetBaseMaterialArray ModelResourceID* pnMaterialGroupIDs: array of
the material Group IDs. Must have trianglecount
entries. If a group ID of 0 is specified.
ModelResourceIndex* pnMaterialIndices:
array of the corresponding material indices. Must have
trianglecount entries.

Sets the materials of all
triangles to specific values.

12

Version 1.0.0 1/8/2019 9:34:00 AM

GetColor DWORD nIndex: Index of the triangle (0-based)

MODELMESH_TRIANGLECOLOR_SRGB* pColor:
returns the color values of the three nodes of the
triangle. (#00000000) means no property or a different
kind of property!

Returns the color of a specific
triangle.

GetColorArray MODELMESH_TRIANGLECOLOR_SRGB* pColors:
returns the color values of the three nodes of each
triangle. Must have at least trianglecount array entries.

Returns the color array of all
triangles

SetSingleColor DWORD nIndex: Index of the triangle (0-based)
MODELMESHCOLOR_SRGB* pColor: new color value of
the triangle. (#00000000) means no color property.

Sets the specific triangle to a
single color. All other
properties are removed. Mixing
properties needs the property
extension API.

SetSingleColorRGB DWORD nIndex: Index of the triangle
BYTE bRed: Red component of the color value
BYTE bGreen: Green component of the color value
BYTE bBlue: Blue component of the color value

Sets the specific triangle to a
single color. All other
properties are removed. Mixing
properties needs the property
extension API. Value range is
from 0 to 255. Alpha will be
255.

SetSingleColorRGBA DWORD nIndex: Index of the triangle (0-based)
BYTE bRed: Red component of the color value
BYTE bGreen: Green component of the color value
BYTE bBlue: Blue component of the color value
BYTE bAlpha: Alpha component of the color value

Sets the specific triangle to a
single color. All other
properties are removed. Mixing
properties needs the property
extension API. #00000000
means no color. Value range is
from 0 to 255.

SetSingleColorFloatRGB DWORD nIndex: Index of the triangle (0-based)
FLOAT fRed: Red component of the color value

FLOAT fGreen: Green component of the color value
FLOAT fBlue: Blue component of the color value

Sets the specific triangle to a
single color. All other
properties are removed. Mixing
properties needs the property
extension API. Value range is
from 0.0 to 1.0. Alpha value
will be set to 1.0

SetSingleColorFloatRGBA DWORD nIndex: Index of the triangle (0-based)
FLOAT fRed: Red component of the color value
FLOAT fGreen: Green component of the color value
FLOAT fBlue: Blue component of the color value
FLOAT fAlpha: Alpha component of the color value

Sets the specific triangle to a
single color. All other
properties are removed. Mixing
properties needs the property
extension API. #00000000
means no color. Value range is
from 0.0 to 1.0

SetSingleColorArray MODELMESHCOLOR_SRGB* pColors: new color values
for the triangles. (#00000000) means no color
property.. Must have at least trianglecount array
entries.

Sets the (single) color of all
triangles. All other properties
are removed.

SetGradientColor DWORD nIndex: Index of the triangle (0-based)
MODELMESH_TRIANGLECOLOR_SRGB* pColor:
new color values of the three nodes of the triangle.
(#00000000) means no color property is set.

Sets the specific triangle to a
color per vertex. All other
properties are removed.

SetGradientColorArray MODELMESH_TRIANGLECOLOR_SRGB* pColors:
pColors returns the color values of the three nodes of
each triangle. Must have at least trianglecount array
entries. (#00000000) means no color property is set.

Sets the (gradient) color of all
triangles. All other properties
are removed.

GetTexture DWORD nIndex: Index of the triangle (0-based)
MODELMESHTEXTURE2D* pTexture: returns the UV
texture values of the three nodes of the triangle.

Returns the 2D texture
information of a specific
triangle.

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

texture ID 0 means no property or a different kind of
property.

GetTextureArray MODELMESHTEXTURE2D* pTextures: returns the UV
texture values of the three nodes of all triangles. Must
have at least trianglecount array entries.

Returns the 2D texture
information of all triangles.

SetTexture DWORD nIndex: Index of the triangle (0-based)
MODELMESHTEXTURE2D* pTexture: new UV texture
values of the three nodes of the triangle. texture ID 0
means no property or a different kind of property.

Sets the 2D texture information
of a specific triangle.

SetTextureArray MODELMESHTEXTURE2D* pTexture: new UV texture
values of the three nodes of all triangles. Must have at
least trianglecount array entries.

Sets the 2D texture information
of all triangles.

7. ILib3MFDefaultPropertyHandler

ILib3MFDefaultPropertyHandler encapsulates all methods for handling 3MF default object properties.

Parent interface: ILib3MFBase

Method Parameters Description
RemoveProperty - Removes the default property

of the object.
GetPropertyType eModelPropertyType* pnPropertyType: Returns the

property type of the triangle
Returns the default property
type of the object

GetBaseMaterial ModelResourceID* pnMaterialGroupID: returns
the material group id, per triangle. A return group id of
0 means either no property at all or a non-material
property.
ModelResourceIndex* pnMaterialIndex: returns
the material index, per triangle. Returns 0, if no base
material is assigned.

Returns the base material the
object

SetBaseMaterial ModelResourceID nMaterialGroupID: Group ID of
the Material Group
ModelResourceIndex nMaterialIndex: Index of
the Material in the Group

Sets the material of an object
to a specific single value. This
must be a base material.

GetColor MODELMESH_TRIANGLECOLOR_SRGB* pColor:
returns the color values of the three nodes of the
triangle. (#00000000) means no property or a different
kind of property!

Returns the default property
color of an object.

SetColor MODELMESHCOLOR_SRGB* pColor: new color value of
the triangle. (#00000000) means no color property.

Sets the default property of an
object to a single color. Mixing
properties needs the property
extension API.

SetColorRGB BYTE bRed: Red component of the color value
BYTE bGreen: Green component of the color value
BYTE bBlue: Blue component of the color value

Sets the default property of an
object to a single color.

SetColorRGBA BYTE bRed: Red component of the color value
BYTE bGreen: Green component of the color value
BYTE bBlue: Blue component of the color value
BYTE bAlpha: Alpha component of the color value

ets the default property of an
object to a single color.

SetFloatColorRGB FLOAT fRed: Red component of the color value

FLOAT fGreen: Green component of the color value
FLOAT fBlue: Blue component of the color value

Sets the default property of an
object to a single color.

SetFloatColorRGBA FLOAT fRed: Red component of the color value

FLOAT fGreen: Green component of the color value
FLOAT fBlue: Blue component of the color value

Sets the default property of an
object to a single color.

14

Version 1.0.0 1/8/2019 9:34:00 AM

FLOAT fAlpha: Alpha component of the color value
SetGradientColor DWORD nIndex: Index of the triangle (0-based)

MODELMESH_TRIANGLECOLOR_SRGB* pColor:
new color values of the three nodes of the triangle.
(#00000000) means no color property is set.

Sets the specific triangle to a
color per vertex. All other
properties are removed.

GetTexture MODELMESHTEXTURE2D* pTexture: returns the UV
texture values of the three nodes of the triangle.
texture ID 0 means no property or a different kind of
property.
FLOAT * pfU: Returns the default U value of the
object.
FLOAT * pfV: Returns the default V value of the
object.

Returns the default 2D texture
information of an object.

SetTexture MODELMESHTEXTURE2D* pTexture: new UV texture
values of the three nodes of the triangle. texture ID 0
means no property or a different kind of property.
FLOAT fU: Sets the default U value of the object.
FLOAT fV: Sets the default V value of the object.

Sets the default 2D texture
information of an object.

8. ILib3MFModelObjectResource

ILib3MFModelObjectResource is a base interface for all 3MF Object Resources, i.e. Mesh Objects and

Component Objects.

Parent interface: ILib3MFModelResource

Method Parameters Description
GetType DWORD* pObjectType: returns object type

constant. See ModelTypes.h for more
information.

Retrieves an object's
type.

SetType DWORD ObjectType: object type constant.
See ModelTypes.h for more information

Sets an object's type.

GetName LPWSTR pwszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill.
needs to be at least string length + 1
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves an object's
name string.

SetName LPCWSTR pwszName: new name of the
object. (e.g. "Car")

Sets an object's name
string.

GetNameUTF8 LPSTR pszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill.
needs to be at least string length + 1
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves an object's
name string in UTF8.

SetNameUTF8 LPCSTR pszName: new name of the object.
(e.g. "Car")

Sets an object's name
string in UTF8.

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

SetPartNumber LPCWSTR pwszPartNumber: new part
number string for referencing parts from an
outside context.

Sets an object's part
number string.

SetPartNumberUTF8 LPCWSTR pszPartNumber: new part
number string for referencing parts from an
outside context.

Sets an object's part
number string in UTF8

GetPartNumber LPWSTR pwszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill.
needs to be at least string length + 1
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves an object's
oartnumber string.

GetPartNumberUTF8 LPSTR pszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill.
needs to be at least string length + 1
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves an object's
oartnumber string in
UTF8.

IsMeshObject BOOL* pbIsMeshObject: returns, if the
object is a mesh object

Retrieves, if an object
is a mesh object

IsComponentsObject BOOL* pbIsComponentObject: returns, if
the object is a components object

Retrieves, if an object
is a component object

IsValidObject BOOL* pbIsValid: returns, if the object is a
valid object description.

Retrieves, if the object
is valid according to
the core spec. For
mesh objects, we
distinguish between
the type attribute of
the object:

• In case of
object type
"other", this
always
means
"false"

• In case of
object type
"support",
this always
means "true"

• In case of
object type
"model", this
means, if the
mesh suffices
all
requirements
of the core
spec chapter
4.1

A component objects is
valid if and only if it
contains at least one
component - and all

16

Version 1.0.0 1/8/2019 9:34:00 AM

child components are
valid objects.

CreateDefaultPropertyHandler ILib3MFDefaultPropertyHandler *
ppPropertyHandler: returns a default
property handler instance for the object

creates a default

property handler for
the object

CreateDefaultMultiPropertyHandler ILib3MFDefaultMultiPropertyHandler
* ppPropertyHandler: returns a default
property handler instance for the object

creates a default
property handler for a
specific multiproperty
channel of an object

GetThumbnailPathUTF8 LPSTR* pszBuffer: buffer to fill
ULONG cbBufferSize: size of the buffer to
fill. needs to be at least string length + 1
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves the path
used as thumbnail for
an object (UTF8).
Returns "" if none is
set

SetThumbnailPathUTF8 LPCSTR* pszName: pszPath path where to
look for the thumbnail (e.g.
"/Textures/thumbnail.png"). Call will NULL to
clear the thumbnail.

Sets an object's
thumbnail package
path (UTF8)

9. ILib3MFModelBaseMaterial

ILib3MFModelBaseMaterial implements the Base Material Group Resources of a 3MF model stream,

and allows direct access to the base material information.

Parent interface: ILib3MFModelResource

Method Parameters Description
GetCount DWORD* pcbCount: returns the count of base

materials.
Retrieves the count of base
materials in the material group.

AddMaterial LPCWSTR pwszName: new name of the base
material. (e.g. "ABS red")
BYTE bRed: New red value of display color (0-255)
BYTE bGreen: New red value of display color (0-
255)
BYTE bBlue: New red value of display color (0-255)
DWORD* pnResourceIndex: returns new Index of
the material in the material group

Adds a new material to the
material group

RemoveMaterial DWORD nIndex: Index of the material in the
material group

Removes a material from the
material group

GetName DWORD nIndex: Index of the material in the
material group
LPWSTR pwszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill. needs
to be at least string length + 1
ULONG* pcbNeededChars returns needed
characters in buffer

Retrieves a base material's name

SetName DWORD nIndex: Index of the material in the
material group
LPCWSTR pwszName: new name of the base
material. (e.g. "ABS red")

Sets a base material's name

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

SetDisplayColorRGB DWORD nIndex: Index of the material in the

material group
BYTE bRed: New red value (0-255)
BYTE bGreen: New red value (0-255)
BYTE bBlue: New blue value (0-255)

Sets a base material's display
color. Alpha is set to 255.

SetDisplayColorRGBA DWORD nIndex: Index of the material in the
material group
BYTE bRed: New red value (0-255)
BYTE bGreen: New red value (0-255)
BYTE bBlue: New blue value (0-255)
BYTE bAlpha: New alpha value (0-255)

Sets a base material's display
color.

SetDisplayColorFloatRGB DWORD nIndex: Index of the material in the
material group
FLOAT bRed: New red value (0.0-1.0)
FLOAT bGreen: New red value (0.0-1.0)
FLOAT bBlue: New blue value (0.0-1.0)

Sets a base material's display
color. Alpha is set to 1.0.

SetDisplayColorFloatRGBA DWORD nIndex: Index of the material in the material
group
FLOAT bRed: New red value (0.0-1.0)
FLOAT bGreen: New red value (0.0-1.0)
FLOAT bBlue: New blue value (0.0-1.0)
FLOAT bAlpha: New alpha value (0.0-1.0)

Sets a base material's display
color.

GetDisplayColor DWORD nIndex: Index of the material in the
material group
BYTE* pbRed: Returns red value (0-255)
BYTE* pbGreen: Returns green value (0-255)
BYTE* pbBlue: Returns blue value (0-255)
BYTE* pbAlpha: Returns alpha value (0-255)

Returns a base material's display
color.

10. ILib3MFModelAttachment

ILib3MFModelAttachment implements the Model Attachments of a 3MF model stream, and allows

direct access to direct binary data.

Parent interface: ILib3MFBase

Method Parameters Description
GetPath LPWSTR pwszBuffer: buffer to fill

ULONG cbBufferSize: size of buffer to fill. needs to be
at least string length + 1.
ULONG* pcbNeededChars: returns needed characters
in buffer

Retrieves a attachment's package
path

SetPath LPCWSTR pwszPath: new path of the attachment. (e.g.
"/Textures/logo.png")

Sets a attachment's package path

GetRelationshipType LPWSTR pwszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill. needs to be
at least string length + 1.
ULONG* pcbNeededChars: returns needed characters
in buffer

Retrieves a attachment's package
relationship type

18

Version 1.0.0 1/8/2019 9:34:00 AM

SetRelationshipType LPCWSTR pwszRelationShipType: new relationship
type attachment. (e.g. "/Data/data.xml")

Sets a attachment's package
relationship type

GetStreamSize ULONG64 pcbStreamSize: Returns the stream size Retrieves the size of the
attachment stream.

WriteToFile LPCWSTR pwszFilename: Filename to write into Writes out the attachment as file.
WriteToBuffer BYTE pBuffer: Buffer to write into

ULONG64 cbBufferSize: Size of the buffer in bytes
Writes out the attachment into a
buffer. Buffer size must be at least
the size of the stream.

WriteToStream IStream pStream: IStream to write into. Writes out the attachment into a
COM IStream. Only available on
Windows.

WriteToCallback VOID* pWriteCallback: Callback to call for writing a
data chunk.
VOID* pUserData: Userdata that is passed to the
callback function

Writes out the attachment and
passes the data to a provided
callback function. The file type is
specified by the Model Writer class

ReadFromFile LPCWSTR pwszFilename: Filename to read from Reads a attachment from a file.
ReadFromBuffer BYTE* pBuffer: Buffer to read from

ULONG64 cbBufferSize: Size of the buffer in bytes

Reads a attachment from a
memory buffer.

ReadFromStream IStream pStream: IStream to read from Reads a attachment from a COM
IStream. Only available on
Windows.

11. ILib3MFModelTexture2D

ILib3MFModelTexture2D implements the Texture2D Resources of a 3MF model stream, and allows

direct access to the texture properties and the image data.

Parent interface: ILib3MFModelResource

Method Parameters Description
GetPath LPWSTR pwszBuffer: buffer to fill

ULONG cbBufferSize: size of buffer to fill. needs to be
at least string length + 1
ULONG* pcbNeededChars: returns needed characters
in buffer

Retrieves a texture’s package path.

SetPath ILib3MFModelAttachment
ppTextureAttachment: new path of the texture. (e.g.
"/Textures/logo.png")

Sets a texture's package path.

GetAttachment LPCWSTR pwszPath: new Retrieves the attachment located at
the path of the texture

SetAttachment ILib3MFModelAttachment*
pTextureAttachment: attachment that holds the
texture's image information

Sets the texture's package path to
the path of the attachment.

GetContentType eModelTexture2DType* peContentType: returns
content type enum

Retrieves a texture's content type

SetContentType eModelTexture2DType eContentType:
new Content Type

Sets a texture's content type

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

GetTileStyleUV eModelTextureTileStyle* peTileStyleU: returns
tilestyle type enum
eModelTextureTileStyle* peTileStyleV: returns
tilestyle type enum

Retrieves a texture's tilestyle type

SetTileStyleUV eModelTextureTileStyle eTileStyleU: new
tilestyle type enum
eModelTextureTileStyle eTileStyleV: new
tilestyle type enum

Sets a texture's tilestyle type

GetFilter eModelTextureFilter* peFilter: returns the filter
type enum

Retrieves a texture's filter type

SetFilter eModelTextureFilter eFilter: new filter type
enum

Sets a texture's filter type

ClearBox2D -

Clears a texture's box2D
coordinates.

GetStreamSize ULONG64* pcbStreamSize: Returns the stream size Retrieves the size of the texture
stream.

WriteToFile LPCWSTR pwszFilename: Filename to write into

Writes out the texture as file.

WriteToBuffer BYTE* pBuffer: Buffer to write into
ULONG64 cbBufferSize: Size of the buffer in bytes

Writes out the texture into a buffer.
Buffer size must be at least the size
of the stream.

WriteToStream IStream* pStream: IStream to write into.

Writes out the texture into a COM
IStream. Only available on Windows.

WriteToCallback

void* pWriteCallback: Callback pointer to call for
writing a data chunk.
void* pUserData: Userdata that is passed to the
callback function

Writes out the texture and passes
the data to a provided callback
function.

ReadFromFile LPCWSTR pwszFilename: Filename to read from Reads a texture from a file.

ReadFromBuffer BYTE * pBuffer: Buffer to read from
ULONG64 cbBufferSize: Size of the buffer in bytes

Reads a texture from a memory
buffer.

ReadFromStream IStream * pStream: IStream to read from Reads a texture from a COM
IStream. Only available on Windows.

12. ILib3MFModelMeshObject

ILib3MFModelMeshObject encapsulates all methods for handling 3MF mesh objects.

Parent interface: ILib3MFModelObjectResource

Method Parameters Description
GetVertexCount DWORD* pnVertexCount: filled with the vertex

count

Returns the vertex count of a
mesh object.

20

Version 1.0.0 1/8/2019 9:34:00 AM

GetTriangleCount DWORD* pnTriangleCount: filled with the
triangle count

Returns the triangle count of a
mesh object.

GetVertex DWORD nIndex: Index of the vertex (0 to
vertexcount - 1)
MODELMESHVERTEX* pVertex: filled with the
vertex coordinates

Returns coordinates of a single
vertex of a mesh object.

SetVertex DWORD nIndex: Index of the vertex (0 to
vertexcount - 1)
MODELMESHVERTEX* pVertex: contains the
vertex coordinates

Sets the coordinates of a single
vertex of a mesh object.

AddVertex MODELMESHVERTEX* pVertex: contains the
vertex coordinates
DWORD* pnIndex: filled with the new Index of the
vertex

Adds a single vertex to a mesh
object.

GetTriangle DWORD nIndex: Index of the triangle (0 to
trianglecount - 1)
MODELMESHTRIANGLE* pTriangle: filled with
the triangle indices

Returns indices of a single
triangle of a mesh object.

SetTriangle DWORD nIndex: Index of the triangle (0 to
trianglecount - 1)
MODELMESHTRIANGLE* pTriangle: contains the
triangle indices

Sets the indices of a single
triangle of a mesh object

AddTriangle MODELMESHTRIANGLE* pTriangle: contains the
triangle indices
DWORD* pnIndex: filled with the new Index of the
vertex

Adds a single triangle to a
mesh object.

GetVertices MODELMESHVERTEX* pVertices: buffer filled
with the vertex coordinates
DWORD nBufferSize: size of the buffer in
elements, must be at least vertexcount
DWORD* pnVertexCount: returns how many
vertices have been written

Retrieves all vertex
coordinates of a mesh object.

GetTriangleIndices MODELMESHTRIANGLE* pIndices: buffer filled
with the triangle indices
DWORD nBufferSize: size of the buffer in
elements, must be at least trianglecount
DWORD* pnTriangleCount: returns how many
triangles have been written

Retrieves all triangle indices of
a mesh object.

SetGeometry MODELMESHVERTEX* pVertices: Array of vertex
coordinates
DWORD nVertexCount: Size of the vertex array
MODELMESHTRIANGLE* pTriangles: Array of
triangle indices
DWORD nTriangleCount: Size of the triangle
array

Sets the whole geometry of a
mesh object.

CreatePropertyHandler ILib3MFPropertyHandler**
ppPropertyHandler: returns a property handler
instance for the mesh.

creates a property handler for
the mesh

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

CreateMultiPropertyHandler DWORD nChannel: Channel Index
ILib3MFPropertyHandler**
ppPropertyHandler: returns a property handler
instance for the mesh.

creates a property handler for
a specific multiproperty
channel of a mesh

IsManifoldAndOriented BOOL* pbIsOrientedAndManifold: returns, if
the object is oriented and manifold

Retrieves, if an object
describes a topologically
oriented and manifold mesh,
according to the core spec

13. ILib3MFModelComponent

ILib3MFModelComponent encapsulates one component node of a 3MF component object. It links to

other object resources of the same model.

Parent interface: ILib3MFBase

Method Parameters Description
GetObjectResourceID DWORD* pnResourceID: returns the associated

resource ID

Returns the associated resource ID of
the component.

GetObjectResource ILib3MFModelObjectResource** ppResource:
returns the associated resource instance

Returns the associated resource
Instance of the component.

GetTransform MODELTRANSFORM* pmTransformation: filled with
the component transformation matrix.

Returns the transformation matrix of
the component.

SetTransform MODELTRANSFORM* pmTransformation: new
transformation matrix

Sets the transformation matrix of the
component.

HasTransform BOOL* pbHasTransform: if true is returned, the
transformation is not equal to the identity

Returns, if the component has a
different transformation than the
identity matrix.

14. ILib3MFModelComponentsObject

ILib3MFModelComponentsObject encapsulates all methods for handling 3MF component objects.

Parent interface: ILib3MFModelObjectResource

Method Parameters Description
AddComponent ILib3MFModelObjectResource* pObject: object to

add as component. May not lead to circular references!
MODELTRANSFORM* pmTransform: optional transform
matrix for the component
ILib3MFModelComponent** ppComponent: returns
new component instance

Adds a new component to a
component object.

22

Version 1.0.0 1/8/2019 9:34:00 AM

GetComponent DWORD nIndex: index of the component to retrieve (0 to
componentcount - 1)
ILib3MFModelComponent** ppComponent: retrieves
component instance

Retrieves a component from a
component object.

GetComponentCount DWORD* pComponentCount: returns the component
count

Retrieves the component count of a
component object.

15. ILib3MFModelBuildItem

ILib3MFModelBuildItem encapsulates all methods for handling 3MF build items.

Parent interface: ILib3MFBase

Method Parameters Description
GetObjectResourceID DWORD* pnID: returns the associated resource ID

Retrieves the object resource
associated to a build item.

GetObjectResource ILib3MFModelObjectResource** ppResource:
returns the associated resource instance

Returns the associated resource
Instance of the build item.

GetObjectTransform MODELTRANSFORM* pmTransformation: filled with
the component transformation matrix.

Returns the transformation matrix of
the build item.

SetObjectTransform MODELTRANSFORM* pmTransformation: new
transformation matrix

Sets the transformation matrix of the
build item.

HasObjectTransform BOOL* pbHasTransform: if true is returned, the
transformation is not equal to the identity

Returns, if the build item has a
different transformation than the
identity matrix.

GetPartNumber LPWSTR pwszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill. needs to
be at least string length + 1.
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves a build item's part number
string.

GetPartNumberUTF8 LPSTR pszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill. needs to
be at least string length + 1.
ULONG* pcbNeededChars: returns needed
characters in buffer

Retrieves a build item's part number
string in UTF8.

SetPartNumber LPCWSTR pwszPartNumber: new part number string
for referencing parts from the outside world.

Sets a build item's part number string

SetPartNumberUTF8 LPCSTR pszPartNumber: new part number string for
referencing parts from the outside world.

Sets a build item's part number string
in UTF8

GetHandle DWORD* pHandle: returns the handle Retrieves an internal handle of the
build item. This 32bit number is
unique throughout the model, but

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

only valid for in-memory use of this
instance.

16. ILib3MFModelBuildItemIterator

ILib3MFModelBuildItemIterator is a helper class to iterate through arbitrary lists of 3MF build items.

Parent interface: ILib3MFBase

Method Parameters Description
MoveNext BOOL* pbHasNext: returns, if there is a build item to use

Iterates to the next build item in the
list.

MovePrevious BOOL* pbHasPrevious: returns, if there is a build item to
use

Iterates to the previous build item in
the list.

GetCurrent ILib3MFModelBuildItem** ppBuildItemInstance:
returns the build item instance

Returns the build item the iterator
points at.

Clone ILib3MFModelBuildItemIterator** ppIterator:
returns the cloned Iterator instance

Creates a new build item iterator with
the same build item list.

17. ILib3MFModel

ILib3MFModel is the basic instance owning all In-Memory elements of a 3MF file.

Parent interface: ILib3MFBase

Method Parameters Description
SetUnit DWORD Unit: enum value for the model unit

(see NMR_ModelTypes.h for details)

sets the units of a model

GetUnit DWORD* pUnit: enum value for the model unit
(see NMR_ModelTypes.h for details)

retrieves the units of a
model

SetLanguage LPCWSTR pwszLanguage: Language string
identifier

sets the language of a
model

SetLanguageUTF8 LPCSTR pszLanguage: Language string
identifier

sets the language of a
model (UTF8)

GetLanguage LPWSTR pwszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill.
needs to be at least string length + 1.
ULONG* pcbNeededChars: returns needed
characters in buffer

retrieves the language of a
model

GetLanguageUTF8 LPSTR pszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill.
needs to be at least string length + 1.

retrieves the language of a
model (UTF8)

24

Version 1.0.0 1/8/2019 9:34:00 AM

ULONG* pcbNeededChars: returns needed
characters in buffer

QueryWriter LPCWSTR pwszWriterClass: string identifier
for the file (currently "stl" and "3mf")
ILib3MFModelWriter** ppWriter: returns
the writer instance

creates a model writer
instance for a specific file
type

QueryReader LPCWSTR pwszReaderClass: string identifier
for the file (currently "stl" and "3mf")
ILib3MFModelReader ** ppReader: returns
the reader instance

creates a model reader
instance for a specific file
type

GetResourceByID DWORD nResourceID: Resource ID
ILib3MFModelResource** ppResource:
returns the resource instance

finds a model resource by
its id

GetTexture2DByID DWORD nResourceID: Resource ID
ILib3MFModelTexture2D** ppTexture:
returns the texture resource instance

finds a model 2d texture by
its id

GetBaseMaterialByID DWORD nResourceID: Resource ID
ILib3MFModelBaseMaterial**
ppMaterial: returns the base material
instance

finds a base material by its
id

GetMeshObjectByID DWORD nResourceID: Resource ID
ILib3MFModelMeshObject **
ppMeshObject: returns the resource instance

finds a mesh object
resource by its id

GetComponentsObjectByID DWORD nResourceID: Resource ID
ILib3MFModelComponentsObject**
ppComponentsObject: returns the resource
instance

finds a components object
resource by its id

GetBuildItems

ILib3MFModelBuildItemIterator**
ppIterator: returns the iterator instance

creates a build item iterator
instance with all build items

GetResources ILib3MFModelResourceIterator**
ppIterator: returns the iterator instance

creates a resource iterator
instance with all resources

GetObjects

ILib3MFModelResourceIterator**
ppIterator: returns the iterator instance

creates a resource iterator
instance with all object
resources

GetMeshObjects

ILib3MFModelResourceIterator**
ppIterator: returns the iterator instance

creates a resource iterator
instance with all mesh
object resources

GetComponentsObjects ILib3MFModelResourceIterator**
ppIterator: returns the iterator instance

creates a resource iterator
instance with all
component object
resources

Get2DTextures

ILib3MFModelResourceIterator**
ppIterator: returns the iterator instance

creates a resource iterator
instance with all 2D texture
resources

GetBaseMaterials

ILib3MFModelResourceIterator**
ppIterator: returns the iterator instance

creates a resource iterator
instance with all base
material resources

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

MergeToModel

ILib3MFModel** ppMergedModel: returns
the merged model instance

merges all components and
objects which are
referenced by a build item.
The memory is duplicated
and a new model is
created.

AddMeshObject

ILib3MFModelMeshObject**
ppMeshObject: returns the mesh object
instance

adds an empty mesh object
to the model

AddComponentsObject

ILib3MFModelComponentsObject**
ppComponentsObject: ppComponentsObject
returns the component object instance

adds an empty component
object to the model

AddTexture2DFromAttachment ILib3MFModelAttachment*
pTextureAttachment: attachment containing
the image data
ILib3MFModelTexture2D **
ppTextureInstance: returns the new texture
instance

adds a texture2d resource
to the model. Its path is
given by that of an existing
attachment.

AddTexture2D LPCWSTR pwszPath: Package path of the
texture
ILib3MFModelTexture2D **
ppTextureInstance: returns the new texture
instance

adds a texture2d resource
to the model.

AddTexture2DUTF8 LPCSTR pszPath: Package path of the texture
ILib3MFModelTexture2D **
ppTextureInstance: returns the new texture
instance

adds a texture2d resource
to the model (UTF8).

AddBaseMaterialGroup ILib3MFModelBaseMaterial**
ppBaseMaterialInstance: returns the new
base material instance

adds an empty
basematerials resource to
the model

AddBuildItem ILib3MFModelObjectResource** pObject:
Object instance associated with the build item
MODELTRANSFORM* pTransform:
Transformation matrix to be used
ILib3MFModelBuildItem** ppBuildItem:
returns the build item instance

adds a build item to the
model

GetPackageThumbnail
Attachment

ILib3MFModelObjectResource** pObject:
Object instance associated with the build item
MODELTRANSFORM* pTransform:
Transformation matrix to be used
ILib3MFModelBuildItem** ppBuildItem:
returns the build item instance

Get the attachment to the
OPC package containing the
package thumbnail

RemovePackageThumbnail
Attachment

 Remove the attachment to
the OPC package containing
the package thumbnail

26

Version 1.0.0 1/8/2019 9:34:00 AM

18. ILib3MFModelFactory

ILib3MFModelFactory is the global factory class for model instances.

Parent interface: ILib3MFBase

Method Parameters Description
CreateModel ILib3MFModel** ppModel: returns created model

instance

creates an empty model instance

GetSpecVersion DWORD* pMajorVersion: returns the major version
of the specification

DWORD* pMinorVersion: returns the major version
of the specification

retrieves the current version of
the 3MF implementation and
specification

GetInterfaceVersion DWORD* pInterfaceVersionMajor: returns the
major version of the shared library
DWORD* pInterfaceVersionMinor: returns the
minor version of the shared library
DWORD* pInterfaceVersionMicro: returns the
micro version of the shared library

retrieves the current interface
version of the library (build
version) this version will
increment with each release of
the library, and should be used
to ensure API compatibility.
(See …)

QueryExtension LPCWSTR* pwszExtensionUrl: pwszExtensionUrl
URL of extension to check
BOOL* pbIsSupported: returns whether the
extension is supported or not
DWORD * pExtensionInterfaceVersion:
pInterfaceVersion returns the interface version of of
the extensions (if extension is supported)

checks whether a extension is
supported by the DLL and which
version of the interface is used.
This extension version will
increment with each change of
the API of the extension and may
be used to ensure API
compatibility.

QueryExtensionUTF8 LPCSTR* pszExtensionUrl: pwszExtensionUrl
URL of extension to check (UTF8)
BOOL* pbIsSupported: returns whether the
extension is supported or not
DWORD * pExtensionInterfaceVersion:
pInterfaceVersion returns the interface version of of
the extensions (if extension is supported)

checks whether a extension is
supported by the DLL and which
version of the interface is used.
This extension version will
increment with each change of
the API of the extension and may
be used to ensure API
compatibility.

RetrieveProgressMessage int progressIdentifier: the progress identifier
that is passed to the callback function
LPCSTR* progressMessage: English text for the
progress identifier

Return an English text for a
progress identifier
Note: this is the only function
you can call from your callback
function.

1.3. Class Reference – BeamLattice specification

The following list gives an overview of the classes that implement the beamlattice specification.

Moreover, it explains the functionality added to core-specification classes.

12. ILib3MFModelMeshObject (continuation)

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

Method Parameters Description
GetBeamLatticeMinLength DOUBLE* pdMinLength: minlength of the

beamlattice
Returns the minimal
member length for the
beamlattice

SetBeamLatticeMinLength DOUBLE dMinLength: minlength of the
beamlattice

Sets the the minimal
member length for the
beamlattice

GetBeamLatticeRadius DOUBLE* pdRadius: default radius of the beams
in the beamlattice

Returns the default radius
for the beamlattice

SetBeamLatticeRadius DOUBLE dRadius: default radius of the beams in
the beamlattice

Sets the default radius for
the beamlattice

GetBeamLatticeCapMode eModelBeamLatticeCapMode* peCapMode:
default eModelBeamLatticeCapMode of the
beamlattice
(MODELBEAMLATTICECAPMODE_SPHERE,
MODELBEAMLATTICECAPMODE_HEMISPHERE,
MODELBEAMLATTICECAPMODE_BUTT)

Returns the default
capping mode for the
beamlattice

SetBeamLatticeCapMode eModelBeamLatticeCapMode eCapMode:
default eModelBeamLatticeCapMode of the
beamlattice

Sets the default capping
mode for the beamlattice

GetBeamLatticeClipping eModelBeamLatticeClipMode* peClipMode:
default eModelBeamLatticeClipMode of the
beamlattice
(MODELBEAMLATTICECLIPMODE_NONE,
MODELBEAMLATTICECLIPMODE_INSIDE,
MODELBEAMLATTICECLIPMODE_OUTSIDE)
DWORD* pnRessourceID: filled with the
resourceID of the clipping mesh-object or a
undefined value if pClipMode is
MODELBEAMLATTICECLIPMODE_NONE

Returns the clipping mode
and the clipping-mesh for
the beamlattice of this
mesh

SetBeamLatticeClipping eModelBeamLatticeClipMode eClipMode:
default eModelBeamLatticeCapMode of the
beamlattice
DOUBLE nRessourceID the resourceID of the
clipping mesh-object. This mesh-object has to be
defined before setting the Clipping

Sets the clipping mode and
the clipping-mesh for the
beamlattice of this mesh

GetBeamLatticeRepresentation BOOL* pbHasRepresentation: flag whether the
beamlattice has a representation mesh.
DWORD* pnRessourceID: filled with the
resourceID of the representation mesh-object.

Returns the
representation-mesh for
the beamlattice of this
mesh

SetBeamLatticeRepresentation DOUBLE nRessourceID the resourceID of the
representation mesh-object. This mesh-object has
to be defined before setting the representation
mesh. Set "0" to unset the representation mesh.

S ets the representation-
mesh for the beamlattice
of this mesh

GetBeamCount DWORD* pnBeamCount: filled with the beam
count

Returns the beam count of
a mesh object

GetBeam DWORD nIndex: Index of the beam (0 to
beamcount - 1)
MODELMESHBEAM * pBeam: filled with the node
indices, radii and capmodes

Returns indices of a single
beam of a mesh object

SetBeam DWORD nIndex: Index of the beam (0 to
beamcount - 1)
MODELMESHBEAM * pBeam: contains the node
indices, radii and capmodes

Sets the indices, radii and
capmodes of a single beam
of a mesh object

AddBeam MODELMESHBEAM * pBeam: contains the node
indices, radii and capmodes
DWORD* nIndex: filled with the new Index of the
beam

Adds a single beam to a
mesh object

28

Version 1.0.0 1/8/2019 9:34:00 AM

SetBeamIndices MODELMESHBEAM * pIndices: buffer with the
beam indices
DWORD nBufferSize: size of the buffer in
elements

Sets all beam indices, radii
and capmodes of a mesh
object

GetBeamIndices MODELMESHBEAM * pIndices: buffer filled with
the beam indices
DWORD nBufferSize: size of the buffer in
elements, must be at least beam count
DWORD* pnBeamCount: returns how many beams
have been written

Retrieves all beam indices
of a mesh object

GetBeamSetCount DWORD* pnBeamSetCount: filled with the
beamset count

Returns the number of
beamsets of a mesh object

AddBeamSet ILib3MFModelMeshBeamSet** ppBeamSet:
pointer to the new beamset

Adds an empty beamset to
a mesh object

GetBeamSet DWORD nIndex: index of the requested beamset
(0 ... beamsetcount-1)
ILib3MFModelMeshBeamSet** ppBeamSet:
pointer to the requested beamset

Returns a beamset of a
mesh object

21. ILib3MFModelMeshBeamSet

ILib3MFModelMeshBeamSet is a class that holds the references that contain to a beamset.

Parent interface: ILib3MFBase

Method Parameters Description
SetName LPCWSTR* pwszName: new name of the BeamSet as

UTF16 string. (e.g. "Car")
Sets a beamset's name string

SetIdentifier LPCWSTR* pwszIdentifier: new identifier of the
BeamSet as UTF16 string. (e.g. "Car")

Sets a beamset's identifier string

GetNameUTF8 LPSTR pszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill. needs to be
at least string length + 1
ULONG* pcbNeededChars: returns needed characters
in buffer

Retrieves a BeamSet's name string
(UTF8)

GetIdentifierUTF8 LPSTR pszBuffer: buffer to fill
ULONG cbBufferSize: size of buffer to fill. needs to be
at least string length + 1
ULONG* pcbNeededChars: returns needed characters
in buffer

Retrieves a BeamSet's identifier
string (UTF8)

GetRefCount DWORD* pnCount: returns the reference count Retrieves the reference count of a
BeamSet

SetRefs DWORD* pRefs: buffer containing the indices of all
beams in this beamset
DWORD nRefCount: number of references to be set

Sets the references of a BeamSet

GetRefs DWORD* pRefs: buffer filled with beam references
(indices of beams)
DWORD nBufferSize: size of the buffer in elements,
must be at least refcount
DWORD* pnRefCount: returns how many references
have been written

Retrieves all references of a BeamSet

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

1.4. Class Reference – Slice-specification

ILib3MFModelMeshBeamSet is a class that holds the references that contain to a beamset.

Parent interface: ILib3MFBase

12. ILib3MFModelMeshObject (continuation)

Method Parameters Description
SetSliceStackId DWORD nSliceStackId: id of the slice stack to

link
Link the mesh object to a slice
stack

GetSliceStackId DWORD* nSliceStackId: id of the slice stack
that is linked to the Mesh

Returns to which slice stack the
mesh is linked

SetSlicesMeshResolution eModelSlicesMeshResolution
eSlicesMeshResolution: meshresolution of
this mesh object

set the meshresolution of the
mesh object

GetSlicesMeshResolution eModelSlicesMeshResolution *
peSlicesMeshResolution: meshresolution of
this mesh object

get the meshresolution of the
mesh object

14. ILib3MFModelComponentsObject (continuation)

Method Parameters Description
SetSliceStackId DWORD nSliceStackId: id of the slice stack to

link
Link the components object to a
slice stack

GetSliceStackId DWORD* nSliceStackId: id of the slice stack
that is linked to the Mesh

Returns to which slice stack the
components is linked

SetSlicesMeshResolution eModelSlicesMeshResolution
eSlicesMeshResolution: meshresolution of
this components object

set the meshresolution of the
components object

GetSlicesMeshResolution eModelSlicesMeshResolution *
peSlicesMeshResolution: meshresolution of
this components object

get the meshresolution of the
components object

19. ILib3MFModel (continuation)

Method Parameters Description
AddSliceStack FLOAT nBottomZ: Model instance to add

slicestack to
ILib3MFSliceStack* ppSliceStack:
returns the new slice stack object

Adds a slicestack to a model

20. ILib3MFSlice

ILib3MFSlice encapsulates all slice functionality for handling slices in 3mf.

30

Version 1.0.0 1/8/2019 9:34:00 AM

Parent interface: ILib3MFBase

Method Parameters Description
AddVertex MODELSLICEVERTEX* pVertex: holds the

vertex coordinates
DWORD* pnIndex: returns the index of the
vertex. Needed to reference the vertex later on
in a polygon

Add a single vertex to a slice

BeginPolygon DWORD* pnIndex: index of the newly created
polygon

Begin a polygon

AddPolygonIndices DWORD nPolygonIndex: index of the polygon
to add the indices to
DWORD* pnVertexIndices: array of the
indices for the polygon
DWORD nBufferSize: number of elements in
the vertex array
DWORD* nPolygonVertexIndex: returns the
start index of the added indices

Add indices to a polygon

GetPolygonCount DWORD* pnPolygonCount: returns the
number of polygons in the slice

Get the number of polygons in
the slice

GetVertexCount DWORD* pnVertexCount: returns the number
of vertices in the slice

Get the number of vertices in
the slice

GetTopZ FLOAT* pfTopZ: returns the upper Z
coordinate of the slice

Get the upper Z coordinate of
the slice

GetIndexCountOfPolygon DWORD nPolygonIndex: the index of the
polygon
DWORD* pnPolygonCount: returns the
number of indices in a polygon of the slice

Get the number of indices of a
polygon in the slice

GetPolygonIndices DWORD nPolygonIndex: the index of the
polygon to query
DWORD* pPolygonIndices: an array to be
filled with the polygon indices
DWORD nBufferCount: number of elements in
"pPolygonIndeces". Should match the number of
indices in the polygon
(GetIndexCountOfPolygon), if less not all indices
are returned, if greater memory is wasted

Get the indices of a polygon

GetVertex DWORD nIndex: index of the vertex to
getMODELSLICEVERTEX* pVertex:
MODELSLICEVERTEX structure to be filled

Get a vertex of the slice

21. ILib3MFSliceStack

ILib3MFSliceStack encapsulates all methods for handling slice stacks in 3MF.

Parent interface: ILib3MFModelResource

Method Parameters Description
AddSlice FLOAT fTopZ: upper Z coordinate of the slice

ILib3MFSlice** ppSliceObject: the newly
created slice object

Adds a slice to the slicestack

GetSlice DWORD nSliceIndex: the index of the slice to
query
ILib3MFSlice** ppSliceObject: returns
the slice

Query a slice from the slice stack

Lib3MF – Open Source Toolkit for 3MF

Copyright 3MF Consortium 2018

GetSliceCount DWORD* pnSliceCount: returns the number of
slices on the slice stack

Get the number of slices on the
slice stack

GetBottomZ FLOAT* pfBottomZ: the lower Z-Coordinate
the slice stack

Get the lower Z-Coordinate of
the slice stack

GetSliceStackId DWORD* pnSliceStackId: returns the slice
stack id

Obtain the slice stack id

GetResourceID DWORD* pnResourceID: returns the resource
id

Get the resource id of the slice
stack

SetSliceRef LPWSTR pwszSliceRef: the name of the
entity for the slice stack

Set the reference of the slice
stack, i.e. the slice stack will be
stored in a separate entity
within the 3mf file

GetSliceRef LPWSTR pwszSliceRef: string for the slice
reference
DWORD nBufferSize: length of the string
passed in pwszSliceRef
DWORD* pnNeededChars: number of
characters needed to store the slice reference

Get the reference of the slice
stack, i.e. the slice stack is
stored in a separate entity
within the 3mf file

License

The 3MF Library is released under the simplified BSD License (http://opensource.org/licenses/BSD-2-

Clause). In short, this means it is allowed to use this code in closed source applications, open source

applications and web services at no charge.

Redistribution and use in source and binary forms, with or without modification,are permitted provided that the following

conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following

disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR

TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF

ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

http://opensource.org/licenses/BSD-2-Clause
http://opensource.org/licenses/BSD-2-Clause

32

Version 1.0.0 1/8/2019 9:34:00 AM

Contributors

The current code base is maintained by the 3MF consortium, and is assembled with contributions from

the following consortium members:

• Autodesk Inc., San Rafael, CA

• Microsoft Corporation, Redmond, WA

• netfabb GmbH, Lupburg, Germany

The development has just begun. We invite everyone interested to contribute test results, bug reports,

suggestions or code contributions under the simplified BSD License. We are actively looking for testers

on all different platforms and in all different programming languages.

If you are making language bindings for your favourite language, we plead with you to release it public

into the Lib3MF repository, as this will enable others to spread the format in an easy way.

The current version of this document and the library code can be obtained from github at

https://github.com/3MFConsortium/lib3mf.

For more information, contact the 3MF Working Group at http://3mf.io.

Open API Points and Roadmap

• Remove Components from ComponentsObjects

• Remove Build Items from Model

• Signature support

• Metadatagroups

• Metadata checking (partially)

• Component Dependency Checking

• ID Reference Checking

• Transformations with negative determinant

• Compositematerials and multiproperties

https://github.com/3MFConsortium/lib3mf
http://3mf.io/

