
rkf45: a Maxima funtion for the numerialsolution of initial value problemsP. J. PapasotiriouDepartment of Materials Siene, University of Patras, Greee.Copyright © 2011 Panagiotis Papasotiriou.This doument is released under the terms of the GNU Free Doumentation Liense. Programode inluded in this doument is released under the terms of GNU General Publi Liense. Seehttp://www.gnu.org/lienses for details.AbstratIn this paper, a Maxima funtion for solving initial value problems is introdued. The funtionimplements the Runge-Kutta-Fehlberg method of fourth-�fth order, providing adaptive step sizeand error ontrol. The syntax is disussed in detail, together with several examples and pratialguidelines. Solution to sti� initial value problems is disussed as well.1 Introdution.Di�erential equations have been of fundamental importane in the appliation of Mathematis tothe physial sienes, and their importane in biologial, soial, and other sienes is not be un-derestimated as well. However, even simple mehanial systems are desribed mathematially bydi�erential equations whih annot be solved analytially, unless simplifying assumptions - some-times very unrealisti ones - are adopted. One ould safely state that �di�erential equations annotbe solved analytially unless if. . .�, and that if. . . is the main subjet of theoretial textbooks aboutdi�erential equations. In most realisti problems, however, the use of numerial methods in orderto solve the di�erential equations involved is more or less mandatory.Over the years, Runge-Kutta methods for integrating di�erential equations beame very popular,beause of their great performane at relatively little omputation e�ort. For many users, the fourth-order Runge-Kutta method is not only the �rst word on the subjet, but the last word as well.However, a good integrator for ordinary di�erential equations should exert some adaptive ontrolover its own progress, making hanges in the integration step size as neessary. Although Runge-Kutta methods were originally �xed-step integrators, several improvements providing adaptive stepsize do exist. In partiular, methods based on a tehnique often alled embedded pairs were widelyused for that purpose, beause of their ability to estimate an �optimal� step size with reduedomputational e�ort. 1
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2 Using rkf45. 2In this paper, we introdue a Maxima funtion, named rkf45, for the numerial solution ofinitial value problems. The method implemented is the popular Runge-Kutta-Fehlberg fourth-�fth-order sheme. It is able to adjust the integration step so that a predetermined auray in thesolution is ahieved with minimum omputational e�ort (only six funtion evaluations are neededper step.) The reader an �nd more details about this algorithm in many Numerial Analysistextbooks, e.g. Nougier (2001); Brian (2006); Burden & Faires (2005); Press et al. (1992).2 Using rkf45.2.1 Syntax.Like all numerial algorithms for solving initial value problems, rkf45 an only solve one or moredi�erential equations of �rst order. This is not a serious restrition, as a di�erential equation ofhigher order an be transformed to a system of �rst-order di�erential equations (Maxima simpli�esthis task as well.)In its simplest form, rkf45 is used to solve the initial value problem desribed by one di�erentialequation, dy
dx

= f (x, y), and one initial ondition, y (x0) = y0. Note that the di�erential equationshould be in the form dy
dx

= f (x, y), i.e., the right-hard side should de�ne the derivative of thedependent variable. In suh ases, rkf45 an be alled asrkf45(ode,fun,initial,interval,options ) ,where ode should de�ne f (x, y) (the right-hand side of the di�erential equation to be solved,) funis the dependent variable (the unknown funtion, say y,) init is the value, y0, of the dependentvariable at the initial value of the independent variable, x0, and interval is a list of three elements.The �rst element identi�es the independent variable, while the seond and third elements are theinitial and �nal values of the independent variable, for instane [x,0,6℄. Initial value does not needto be less than �nal value, so an interval like [x,6,0℄ is also valid.If a system of di�erential equations is to be solved, rkf45 should be alled in the formrkf45([ode1,ode2,...℄,[fun1,fun2,...℄,[init1,init2,...℄,interval,options) ,where [ode1,ode2,...℄ is a list de�ning the right-hand sides of the di�erential equations, [fun1,fun2,...℄is the list of the dependent variables, [init1,init2,...℄ is a list de�ning the value of the depen-dent variables at the initial value of the independent variable, and interval is a list de�ning theindependent variable and the integration interval, as desribed above.A number of optional arguments are aepted by rkf45:1. full_solution: A Boolean, de�ning if rkf45 should return full solution or not. If set totrue, rkf45 will return a list ontaining full solution at all integration points seleted by thealgorithm. If set to false, only the solution at the �nal point will be returned (default: true.)2. absolute_tolerane: The desired upper bound of the error (default: 10−6.) Eah integrationstep is aepted only if the loal estimated error is less than absolute tolerane. If not, thestep will be rejeted, and a new, re�ned step will be tried again, until the estimated error issmall enough.



2 Using rkf45. 33. max_iterations: The maximum number of iterations (default: 10000.)4. h_start: The initial integration step (default: one 100th of the integration interval.) Theuser does not need to are muh about that optional argument. It an be useful in speialases only, and it is not absolutely neessary even then (see � 2.2.2 for an example.)5. report: A Boolean, de�ning if a report will be printed at exit. If set to true, rkf45 will printa report, giving details about the alulations done (default: false.)Some general remarks should be emphasized.1. The user has no aess to the integration steps taken; they are seleted automatially in suha way that the result is aurate enough. Eah step taken is �optimal�, in the sense that it issu�iently small so that estimated error is less than desired absolute_tolerane. However,the user should remember that the algorithm only estimates the absolute error. Nevertheless,this error estimation is fairly good in most ases, and the atual absolute error is typially lessthan absolute_tolerane (see � 2.2.1 for an example.)2. absolute_tolerane refers to absolute (not relative) auray. The default value, 10−6, maybe too high or too low, depending on the nature of the problem under onsideration. Forexample, it doesn't make sense to seek for a solution with absolute error less than 10−6 whenthe funtions [fun1,fun2,...℄ take typial values of 104 in the integration interval. Ina similar way, the default tolerane may be too high if the funtions take typial values of
10−7. For that reason, It is always better to have an idea about the behavior of the funtionsinvolved in the di�erential equations (see � 2.2.3 for an example.)3. If the algorithm annot ahieve an aurate solution, it exits with a warning message. In suhases, one should not blindly inrease the maximum number of iterations. The �rst thing to doif something goes wrong is to hek the di�erential equations passed to rkf45. In many ases,an error in [ode1,ode2,...℄, even a small one, may lead to a ompletely di�erent problemthan the one rkf45 is supposed to solve. Furthermore, reduing absolute_tolerane is wortha try as well. Trying to get a �rst solution, perhaps less aurate and in a more narrow interval,is a good idea if rkf45 is unable to return a solution at a �rst try. Suh a solution an be usedas a guideline to get an idea of what went wrong in the �rst try, and alter optional argumentsaordingly, so that a more aurate solution an be ahieved.2.2 Examples.Note: Numerial results presented in this paper have been obtained by running the example pro-grams on a Debian GNU/Linux 64 bit system. Results obtained on a di�erent system may di�erslightly.2.2.1 One �rst-order di�erential equation.As a �rst simple example, onsider the initial value problem

dy

dx
+ 3xy2 −

1

x3 + 1
= 0, y (0) = 0, (1)
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2 Using rkf45. 5
✞ ☎load("rkf45 .ma")$sol : rkf45(−3*x*y^2+1/(x^3+1),y,0 , [x,0 ,5℄ , report=true)$plot2d( [ disrete , sol ℄ , [ style , [ lines , 4 ℄ ℄ , [ psfi le ,"Example_1a. eps"℄)$x_points :map( f irst , sol )$steps : part(x_points , allbut(1))−part(x_points , allbut(length(x_points)))$x_step(x):=sum(harfun(x_points [ i℄<=x and x<x_points [ i+1℄)*steps [ i ℄ , i ,1 ,length(steps ))$plot2d(x_step(x) , [x,0 , last (x_points)−lmin(steps )/10℄ ,[ style , [ lines ,4 ℄ ℄ ,[ olor ,magenta℄ , [ ylabel ,"step size" ℄ , [ psfi le ,"Example_1b. eps"℄)$y_exat(x):=x/(x^3+1)$errors :map(lambda( [u℄ ,abs(y_exat(u[1℄)−u[2 ℄)) , sol )$print("Atual minimum error :" ,lmin(part(errors , allbut (1))))$print("Atual maximum error :" ,lmax(errors ))$plot2d( [ disrete ,x_points , errors ℄ , [ logy ℄ , [ style , [ lines , 4 ℄ ℄ , [ olor , red ℄ ,[ ylabel ,"error" ℄ , [ psfi le ,"Example_1. eps"℄)$
✡✝ ✆Listing 1: Maxima program for solving Eqs. (1).
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2 Using rkf45. 6with x ∈ [0, 5]. In fat, this is a Riatti equation, and the exat solution is x
x3+1

, whih will beused to hek our results (in Maxima, the exat solution an be obtained by using the pakageontrib_ode.)Listing 1 shows the Maxima program for solving the problem numerially. Note partiularly theall of rkf45: rkf45(-3*x*y^2+1/(x^3+1),y,0,[x,0,5℄)(the optional argument report=true is also used in Listing 1, to get a report about alulationsdone.) Note that we needed to rewrite the di�erential equation in the form dy
dx

= −3xy2 + 1
1+x3 .Results returned by rkf45 are stored in a list, with elements in the form [x,y℄, where x is anintegration point (seleted by the algorithm,) and y is the value of the funtion y (x) at that point.Solution returned an be used to plot our results, as in Fig. 1a. The evolution of the step size isplotted in Fig. 1b; the algorithm uses small integration steps from x ≈ 0.5 to x ≈ 2 beause y (x) ishanging rather rapidly in that interval. For x & 2, rkf45 starts to inrease the step size, beausethe slope of y (x) remains small, so there is no need to use small integration steps. Note that the�rst step taken is 0.05, whih is atually the default value (reall that default initial step is one100th of the integration interval, in this ase 5

100 = 0.05.) Also note that the last integration step isonsiderably smaller than the previous ones, beause the �nal integration point, in this ase x = 5,has been reahed.Now, let us hek the report about the omputations done. In this example, rkf45 gives thefollowing output, whih is rather typial.------------------------------------------------------Info: rkf45:Integration points seleted: 42Total number of iterations: 45Bad steps orreted: 4Minimum estimated error: 3.048850451617402E-10Maximum estimated error: 9.5960328100330727E-7Minimum integration step taken: 0.05Maximum integration step taken: 0.31667551601085------------------------------------------------------There are some interesting things in this information. First, the algorithm found that four stepswere bad. There is nothing to worry about that; it simply means that auray riterion wasnot satis�ed four times during the omputations, so that the orresponding integration steps wererejeted, and rkf45 tried a new, �optimal� step instead. No step is aepted if the estimated erroris not less than presribed auray (whih is 10−6 in this example - the default value, as we didn'tused the optional argument absolute_tolerane.) Seond, 42 integration points were seletedby the algorithm (inluding the initial point.) rkf45 needed 45 iterations to solve the problem:
41 iterations for the aepted integration points (exluding the initial point) plus four iterationsonerning the bad steps, whih were not aepted. Third, the minimum error reported by thealgorithm is ≈ 3.0 × 10−10 (the error is atually zero at the initial point, but rkf45 does not takethat point into aount, when alulating estimated errors.) The maximum error is estimated tobe ≈ 9.6 × 10−7, marginally lower than requested absolute error tolerane, 10−6. In this partiular



2 Using rkf45. 7example, we know the exat solution, so the program an ompute atual minimum and maximumerrors, whih are found to be ≈ 4.6 × 10−11 and ≈ 5.9 × 10−7, respetively. This veri�es that ournumerial results are highly aurate. In both ases, the algorithm overestimates the atual error.This is expeted, as every numerial method has no means to alulate the atual error; it an onlyalulate the loal trunation error, as an estimation of the atual global error. This means that theatual error might be lower or even higher than the error estimated by the algorithm. However, thealgorithm tries to be onservative, so the di�erene between atual and estimated error should besmall and generally not signi�ant.In this example, error estimation was aurate enough: atual maximum error, ≈ 5.9× 10−7, isindeed less than 10−6, whih was the (default) absolute_tolerane requested. Those remarks analso be veri�ed in Fig. 2, where the absolute error as a funtion of x is plotted; we see that the erroris kept smaller than presribed auray. It is worth mentioning here how rkf45 inreases the initialstep, as it estimates that the error is several orders of magnitude smaller than absolute_tolerane,so there is no need to keep integrating with suh a small step. In general, rkf45 tries to selet the�optimal� step, in the sense that estimated error is kept less than presribed auray, but lose toit. Report also gives some information about the steps taken: the algorithm needed to take severalstep sizes, varying from 0.05 to ≈ 0.317, depending on the integration point. Note that the minimumstep, 0.05, is atually the initial step; this is beause a smaller step was not needed in this partiularexample.2.2.2 An initial value problem with threshold e�et.Consider the initial value problem
dg

dt
= s− 1.51g + 3.03

g2

g2 + 1
, g (0) = 0, (2)with t ∈ [0, 100]. Here, s is a parameter. This is a mathematial model for a biohemial mehanismalled geneti swith (Brian (2006, pp. 577-579).) It is expeted that the solution, g (t), reahes anequilibrium state as t→ ∞. What is interesting in that deeptively easy problem is that it exhibitsa so alled threshold e�et : for some ritial value of s, the equilibrium state of g (t) undergoes anabrupt hange to a higher level.Listing 2 shows the Maxima program whih solves Eqs. (2) for three di�erent values of s (theprogram is simpli�ed a lot by using Maxima's funtion makelist.) The graphial output of theprogram is shown in Fig. 3 (f. Brian (2006, Fig. 7.7).) We verify that the initial value problemexhibits the threshold e�et, as expeted by the theory. The ritial value, s = sc, is somewherebetween s = 0.202 and s = 0.204 (we an easily ompute the exat value of sc in Maxima, but thisis out of the sope of this paper.) Now, let us examine how rkf45 reats on the threshold e�et. Inthe s = 0.202 ase, rkf45 reports------------------------------------------------------Info: rkf45:Integration points seleted: 24Total number of iterations: 24Bad steps orreted: 1Minimum estimated error: 8.9798104760311307E-9



2 Using rkf45. 8

✞ ☎load("rkf45 .ma")$t_start :0$ t_end:100$sol :makelist(rkf45(equ,g ,0 , [ t , t_start ,t_end℄ , report=true ) ,equ ,makelist(s−1.51*g+3.03*g^2/(1+g^2),s ,[0.206 ,0.204 ,0.202℄))$plot2d(makelist ( [ disrete , s ℄ , s , sol ) , [ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t"℄ ,[ ylabel ,"g(t)" ℄ , [ legend ,"s=0.206" ,"s=0.204" ,"s=0.202"℄ ,[gnuplot_preamble ,"set key le f t" ℄ , [ psfi le ,"Example_2a. eps"℄)$sol206: rkf45(0.206−1.51*g+3.03*g^2/(1+g^2),g ,0 , [ t , t_start ,t_end℄ ,absolute_tolerane=5e−8, report=true)$plot2d( [ disrete , sol206 ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t"℄ ,[ ylabel ,"g(t)" ℄ , [ legend ,"s=0.206, rkf45 results"℄ ,[gnuplot_preamble ,"set key bottom right" ℄ , [ psfi le ,"Example_2b. eps"℄)$sol206_rk : rk(0.206−1.51*g+3.03*g^2/(1+g^2),g,0 ,[ t , t_start ,t_end,(t_end−t_start)/(length(sol206)−1)℄)$plot2d( [ disrete , sol206_rk ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ ,[ ylabel ,"g(t)" ℄ , [ legend ,"s=0.206, rk results"℄ ,[gnuplot_preamble ,"set key bottom right" ℄ , [ psfi le ,"Example_2. eps"℄)$
✡✝ ✆Listing 2: Maxima program for solving Eqs. (2) for three di�erent values of the parameter s.



2 Using rkf45. 9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  20  40  60  80  100

g

t

s=0.206
s=0.204
s=0.202

Fig. 3: Graphial output of Listing 2 (part I.)Maximum estimated error: 3.870532540022239E-7Minimum integration step taken: 0.15874561265253Maximum integration step taken: 19.17485694258996------------------------------------------------------We see that 24 integration steps were seleted to solve the problem. What is interesting here is thatone bad step was found, rejeted, and re�ned. It is easy to �gure out why that bad step oured. Bydefault, the initial step is set to one 100th of the integration interval, in this ase 1. Apparently, thatstep was too big to get an aurate solution near t = 0, where the value of g (t) is hanging rapidly.We an easily verify this is the ase by using the optional argument h_start to set a smaller valuefor the initial step, say h_start=0.2, and run the program again: we get almost the same results,but this time no bad steps are reported in the s = 0.202 ase. It is not really needed to hange theinitial step manually, but it is a good example on how optional argument h_start an be used toinvestigate what happened in some speial ases.Now let us ompare this report with the orresponding report for s = 0.206:------------------------------------------------------Info: rkf45:Integration points seleted: 62Total number of iterations: 75Bad steps orreted: 14Minimum estimated error: 1.3371075149203189E-12



2 Using rkf45. 10Maximum estimated error: 8.6197147915565898E-7Minimum integration step taken: 0.15685566484769Maximum integration step taken: 7.845262303547721------------------------------------------------------This time, 14 bad steps needed to be orreted. This is beause of the high slope of the solution,whih fored rkf45 to re�ne the step several times, due to the rapid hanges in g (t). What is moreinteresting here is the fat that 62 integration points were seleted, about 2.5 times more than inthe s = 0.202 ase. This is how the algorithm reats to the threshold e�et. Solution for s = 0.206is above the ritial value, sc. The high slope of g (t) between t ≃ 30 and t ≃ 50 was deteted by thealgorithm, and it reated by taking more, smaller integration steps, in order to keep the estimatederror as small as required; in fat, about 42% of the total integration points lie in t ∈ [30, 50]. Thisis a typial behavior for adaptive step size methods, and the main reason they are widely used. Onean easily imagine what would happen if we used a �xed-size method to solve this problem: thealgorithm would not are about the abrupt hange in g (t), and it is left to the user to guess howmany integration steps should be taken to get an aurate solution.In order to examine the behavior of rkf45 ompared to that of a �xed step size method, wesolve the problem for s = 0.206 again, this time with absolute tolerane set to 5× 10−8, so that atleast seven deimal digits should be aurate. Report in this ase reveals that rkf45 seleted moreintegration points than before:------------------------------------------------------Info: rkf45:Integration points seleted: 110Total number of iterations: 122Bad steps orreted: 13Minimum estimated error: 7.5714731382439109E-17Maximum estimated error: 4.8700547655067209E-8Minimum integration step taken: 0.036668228503785Maximum integration step taken: 5.760239986218677------------------------------------------------------We see that 110 points were seleted, instead of 62 points, if auray is set to default, 10−6. Asexpeted, the error in omputations is lower; maximum error is now estimated to be ≈ 4.9 × 10−8,ompared to ≈ 8.6× 10−7 in the previous ase.We now solve the problem for s = 0.206 using Maxima's funtion rk, whih is a �xed-step,fourth-order Runge-Kutta method. We set the �xed step size so that rk uses 110 integration points(same as in the rkf45 ase above.) Fig. 4 shows our results graphially, and it is easy to see thedi�erene between adaptive and �xed step size methods. An adaptive step size method selets manyintegration points in the steep parts of the urve, and only a few points in the rest. On the ontrary,a �xed step size method just uses the same step size everywhere, regardless of the slope of the urve.In this example, rkf45 seleted ≈ 49% of the total integration points in the most steep part of theurve, t ∈ [30, 50], while rk used only 20% of the total points in the same interval. On the otherhand, for t > 50, rkf45 seleted ≈ 23% of the total integration points, while rk used 50% of thetotal points; most of them are atually wasted omputations, sine funtion g (t) pratially reahesan equilibrium state soon after t = 50. Note that rkf45 ould selet even less integration points in
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s=0.206, rkf45 results(a) Numerial solution obtained by rkf45. Auray is set to 5× 10−8.
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s=0.206, rk results(b) Numerial solution obtained by rk, using same number of integration points as in (a).Fig. 4: Graphial output of Listing 2 (part II.)



2 Using rkf45. 12
✞ ☎load("rkf45 .ma")$k1:0.4*8.8/62/0.03$ k2:0.5*8.8/139/0.2/0.003$ k3:0.4*8.8/139/0.2/0.003$t_start :0$ t_end:2$sol : rkf45 ( [k1*(C−L) ,k2*(32−C)+k3*(L−C) ℄ , [L,C℄ ,[150 ,150℄ , [ t , t_start ,t_end℄ ,report=true)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"time (hours)" ℄ , [ ylabel ,"temperature (F)"℄ ,[ legend ,"liquid , L(t)" ,"ontainer , C(t)" ℄ , [ psfi le ,"Example_3a. eps"℄)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ , [ x,0 ,0.3℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ , [ xlabel ,"time (hours)"℄ ,[ ylabel ,"temperature (F)" ℄ , [ legend ,"liquid , L(t)" ,"ontainer , C(t)" ℄ ,[ psfi le ,"Example_3b. eps"℄)$
✡✝ ✆Listing 3: Maxima program for solving Eqs. (3).that region, but algorithm implementation is rather onservative, and does not allow too big stepsize hanges.2.2.3 A system of two �rst-order di�erential equations.In this setion we shall see how to use rkf45 in order to solve a system of two �rst-order di�erentialequations with respet to two initial onditions,

{

dL
dt

= k1 (C − L)
dC
dt

= k2 (32− C) + k3 (L− C)
,

{

L (0) = 150
C (0) = 150

, (3)with t ∈ [0, 2]. Eqs. (3) desribe the ooling of a ontainer and its liquid ontains. Here, t is thetime, L, C are the temperatures of the liquid and its ontainer, respetively, and k1, k2, k3 areonstants (see Brian (2006, pp. 626-627) for details.) Listing 3 shows the Maxima program used tosolve the problem. Notie how rkf45 is alled in this ase,rkf45([k1*(C-L),k2*(32-C)+k3*(L-C)℄,[L,C℄,[150,150℄,[t,t_start,t_end℄)(we also used the optional argument report=true in Listing 3, to get an idea of the alulationsdone.) Result is stored in a list, with elements in the form [t,L,C℄, where t is the integration point,and L, C are the values of the funtions L and C at t. The graphial output of the program is shownin Fig. 5 (f. Brian (2006, Fig. 7.16).) Note partiularly that the ontainer is ooled muh faster thatits liquid ontents, and funtion C (t) is dereasing rapidly in the beginning. In this ase, reportprinted by rkf45 is as follows------------------------------------------------------Info: rkf45:
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✞ ☎load("rkf45 .ma")$t_start :0$ t_end:20$ mu:4$equ : ' d i f f (x, t,2)+mu*(x^2−1)*'d i f f (x, t)+x=0$equ2 : [ ' d i f f (x1, t)=x2,ev(solve(equ , ' d i f f (x, t ,2)) [1 ℄ , ' d i f f (x, t ,2)='di f f (x2, t ) ,' d i f f (x, t)=x2,x=x1) ℄ ;equ2 :map(rhs ,equ2) ;sol : rkf45(equ2 , [ x1,x2 ℄ , [0 .75 ,0 ℄ , [ t , t_start ,t_end℄ , report=true)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t ) , x'( t)" ℄ ,[ legend ,"x(t)" ,"x'( t)" ℄ , [ psfi le ,"Example_4a. eps"℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [2 ,3 ℄ )) , sol ) ℄ , [ style , l ines [4 ℄ ℄ ,[ olor ,magenta℄ , [ xlabel ,"x" ℄ , [ ylabel ,"x'" ℄ , [ psfi le ,"Example_4b. eps" ℄)$
✡✝ ✆Listing 4: Maxima program for solving Eqs. (5).Integration points seleted: 316Total number of iterations: 332Bad steps orreted: 17Minimum estimated error: 5.4650657325752074E-8Maximum estimated error: 9.7738230565866937E-7Minimum integration step taken: 1.6519396700522609E-4Maximum integration step taken: 0.044380874549758------------------------------------------------------We see that the algorithm seleted 316 integration points in this ase, muh more than in previousexamples. This is beause a very small step was needed for small t, due to the rapidly dereasingfuntion C (t), and beause of the high auray required. In fat, 234 out of 316 points (about
74%) were needed for a small time interval, from t = 0 to t = 0.1 (5% of the total time interval.)This fat is more pronouned in 5b. Furthermore, the fat we solved the problem using defaultauray, 10−6, is an exaggeration, onsidering that C (t) & 40 ◦F. We an therefore safely reduethe auray needed to a more plausible value, say 5× 10−3, so that results should still be aurateto at least two deimal digits. Indeed, adding auray=5e-3 in the all of rkf45 would redue theintegration points to 93 (≈ 3.4 times less than above,) without any notieable loss of auray.2.2.4 A seond-order di�erential equation: the van der Pol equation.As an example of a seond-order di�erential equation, we shall solve the initial value problem de-sribed by the well-known van der Pol equation and two initial onditions (see, e.g., Hairer et al.(1993, � I.16), Hairer & Wanner (2002, Eq. 1.5), Brian (2006, Example 7.28))

dx2

dt2
+ µ

(

x2 − 1
) dx

dt
+ x = 0,

{

x (0) = 0.75
dx
dt

∣

∣

x=0
= 0

, (4)
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x(b) Phase portrait.Fig. 6: Graphial output of Listing 4.where t ∈ [0, 20], and µ is a positive parameter. This is an osillator with non-linear dumping; whatmakes this problem interesting is exatly the damping term, µ (x2 − 1
)

dx
dt
. For |x| > 1, the dampingoe�ient, µ (x2 − 1

), is positive, and thus the damping term ats as frition or resistane, drainingenergy from the system. However, if |x| < 1 the damping oe�ient is negative, and the term atsas �negative resistane�, supplying energy to the system. From a omputational point of view, thedumping parameter, µ, is ruial; a small value of µ makes the damping term negligible, and theproblem is very easy to solve. On the other hand, a higher value of µ makes the problem sti�, andthus muh harder to solve numerially. In this example, we take µ = 4, a rather small value.The initial value problem (4) an be solved by transforming the original seond-order equationto a system of two �rst-order di�erential equations. This an done by putting x = x1, dxdt = x2 (and,onsequently, dx2
dt2

= dx2
dt
). so that Eqs. (4) are now written as

{

dx1
dt

= x2
dx2
dt

= −µ
(

x21 − 1
)

x2 − x1
,

{

x1 (0) = 0.75
x2 (0) = 0

. (5)Transformation an be easily done in Maxima, as shown in Listing 4. Eqs. (5) an now be solved byrkf45. just as any other system of �rst-order di�erential equations. Solution is returned as a list,with elements in the form [t,x1,x2℄, where t is the integration point, and x1, x2 are the values ofthe funtions x1, x2 (or, equivalently, x, dxdt ) at that point. Graphial output of the Maxima program4 is shown in Fig. 6, where the non-linear osillatory nature of the solution is apparent (f., e.g.,Brian (2006, Fig. 7.18).)In this example, the absolute tolerane is set to 10−6 (the default value,) and the report returnedby rkf45 is as follows.------------------------------------------------------Info: rkf45:Integration points seleted: 632Total number of iterations: 652Bad steps orreted: 21



2 Using rkf45. 16Minimum estimated error: 2.839347393139819E-8Maximum estimated error: 9.914713641306354E-7Minimum integration step taken: 0.0068707778178574Maximum integration step taken: 0.10198351520456------------------------------------------------------Here 632 integration points were seleted, and the maximum estimated error is ≈ 9.9 × 10−7. Thehigh number of integration points is aused by the slopes of the urves, espeially dx
dt

(see Fig. 6a.)Although omputation time is not an issue in this example, omputations needed an be reduedonsiderably by reduing absolute_tolerane. For example, if four aurate deimal digits areenough, we an set absolute_tolerane=5e-5, and rkf45 would now need 252 points; that is,omputations needed would be redued by about 60%, but the result would still be very lose towhat we get with more than double the omputational e�ort.2.2.5 A system of two seond order di�erential equations: the double pendulum.The double pendulum is a simple physial system onsisting of one pendulum attahed to another.Despite its simpliity, it exhibits rih dynami behavior, varying from a simple linear system to ahaoti system. One an easily derive the Lagrangian and the equations of motion using Maxima,but we shall onentrate on the result of that algebra, whih is two oupled seond-order di�erentialequations; together with four initial onditions, they form the initial value problem,














d2θ1
dt2

=
−g(2m1+m2) sin θ1−m2g sin(θ1−2θ2)−2 sin(θ1−θ2)m2

(

(

dθ2

dt

)

2

ℓ2+
(

dθ1

dt

)

2

ℓ1 cos(θ1−θ2)

)

ℓ1(2m1+m2−m2 cos(2θ1−2θ2))

d2θ2
dt2

=
2 sin(θ1−θ2)

(

(

dθ1

dt

)

2

ℓ1(m1+m2)+g(m1+m2) cos θ1+
(

dθ2

dt

)

2

ℓ2m2 cos(θ1−θ2)

)

ℓ2(2m1+m2−m2 cos(2θ1−2θ2))

, (6)
θ1 (0) =

π

8
, θ2 (0) =

π

4
,

dθ1
dt

∣

∣

∣

∣

t=0

= 0,
dθ2
dt

∣

∣

∣

∣

t=0

= 0, (7)where g is is the loal aeleration of gravity, m1, m2 are the two masses, ℓ1, ℓ2 are the lengths ofthe two rods, and θ1, θ2 are the angles that eah pendulum swings away from vertial downwards(as usual, ounter-lokwise angles are positive.) In order to solve this problem numerially, we needto transform Eqs. (6) to a system of four �rst-order di�erential equations, and transform the initialonditions (7) aordingly. The proedure is similar to that of � 2.2.4: We put dθ1
dt

= ω1, dθ2dt = ω2(angular veloities of the two rods,) and, onsequently, d2θ1
dt2

= dω1

dt
, d2θ2
dt2

= dω2

dt
, so that the problemis now written as























dθ1
dt

= ω1
dθ2
dt

= ω2

dω1

dt
=

−g(2m1+m2) sin θ1−m2g sin(θ1−2θ2)−2 sin(θ1−θ2)m2(ω2

2
ℓ2+ω2

1
ℓ1 cos(θ1−θ2))

ℓ1(2m1+m2−m2 cos(2θ1−2θ2))

dω2

dt
=

2 sin(θ1−θ2)(ω2

1
ℓ1(m1+m2)+g(m1+m2) cos θ1+ω2

2
ℓ2m2 cos(θ1−θ2))

ℓ2(2m1+m2−m2 cos(2θ1−2θ2))

, (8)
θ1 (0) =

π

8
, θ2 (0) =

π

4
, ω1 (0) = 0, ω2 (0) = 0. (9)The Maxima program that solves this problem is shown in Listing 5. The program is quitesimilar than the previous ones (it is more lengthy mainly beause several quantities are plotted.)
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✞ ☎load("rkf45 .ma")$m1:1$ m2:1.5$ l1 :0.4$ l2 :0.6$ g:9.81$ t_start :0$ t_end:8$d2th1dt2:(−g*(2*m1+m2)*sin(th1)−m2*g*sin(th1−2*th2)

−2*sin(th1−th2)*m2*( ' d i f f (th2 , t)^2*l2+'di f f (th1 , t)^2*l1*os(th1−th2)))/(l1*(2*m1+m2−m2*os(2*th1−2*th2)))$d2th2dt2:(2* sin(th1−th2)*( ' d i f f (th1 , t)^2*l1*(m1+m2)+g*(m1+m2)*os(th1)+'di f f (th2 , t)^2*l2*m2*os(th1−th2)))/(l2*(2*m1+m2−m2*os(2*th1−2*th2)))$equs :ev ( [omega1,omega2,d2th1dt2,d2th2dt2℄ , ' d i f f (th1 , t)=omega1,' d i f f (th2 , t)=omega2) ;th1_start : f loat(%pi/8)$ th2_start : f loat(%pi/4)$ omega1_start:0$ omega2_start:0$sol : rkf45(equs , [ th1 , th2 ,omega1,omega2℄ ,[ th1_start , th2_start ,omega1_start,omega2_start ℄ , [ t , t_start ,t_end℄ ,report=true)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t (s)" ℄ , [ ylabel ,"angle (rad)" ℄ ,[ legend ,"{/Symbol q}_1(t)" ,"{/Symbol q}_2(t)"℄ ,[ psfi le ,"Example_5a. eps"℄)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,4 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,5 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t (s)" ℄ , [ ylabel ,"angular veliity (rad/s)" ℄ ,[ legend ,"{/Symbol w}_1(t)" ,"{/Symbol w}_2(t)"℄ ,[ psfi le ,"Example_5b. eps"℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [2 ,3 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol q}_1 (rad)" ℄ , [ ylabel ,"{/Symbol q}_2 (rad)"℄ ,[ olor ,magenta℄ , [ legend , false ℄ , [ psfi le ,"Example_5. eps" ℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [4 ,5 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol w}_1 (rad/s)" ℄ , [ ylabel ,"{/Symbol w}_2 (rad/s)" ℄ ,[ olor ,magenta℄ , [ legend , false ℄ , [ psfi le ,"Example_5d. eps" ℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [2 ,4 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol q}_1 (rad)" ℄ , [ ylabel ,"{/Symbol w}_1 (rad/s)"℄ ,[ olor , green ℄ , [ legend , false ℄ , [ psfi le ,"Example_5e. eps"℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [3 ,5 ℄ )) , sol ) ℄ , [ style , [ lines ,4 ℄ ℄ ,[ xlabel ,"{/Symbol q}_2 (rad)" ℄ , [ ylabel ,"{/Symbol w}_2 (rad/s)"℄ ,[ olor , green ℄ , [ legend , false ℄ , [ psfi le ,"Example_5f. eps"℄)$
✡✝ ✆Listing 5: Maxima program for solving Eqs. (8-9).
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2 Using rkf45. 19In this partiular example, we take m1 = 1kg, m2 = 1.5 kg, ℓ1 = 0.4m, ℓ2 = 0.6m, and g =
9.81m/s2. Transformation from Eqs. (6-7) to Eqs. (8-9) and numerial solution via rkf45 is similarto that in Listing. 4. The transformed system is solved by rkf45 as a system of four �rst-orderdi�erential equations (for t ∈ [0, 8].) Solution is returned as a list, with elements in the form[t,th1,th2,omega1,omega2℄, where t is the integration point, and th1, th2, omega1, omega2 arethe values of the funtions θ1, θ2, ω1, ω2 at that point. Using that information, the program reatesseveral plots, shown in Fig. 7. Report returned by rkf45 shows that 845 integration points wereused: ------------------------------------------------------Info: rkf45:Integration points seleted: 845Total number of iterations: 877Bad steps orreted: 33Minimum estimated error: 2.350379310893348E-8Maximum estimated error: 9.7924074620423794E-7Minimum integration step taken: 0.0056717734638438Maximum integration step taken: 0.01858201039005------------------------------------------------------The maximum error is estimated to be ≈ 9.8 × 10−7. As in the previous example, setting aurayto 5× 10−5, redues the number of integration points by about 60%.2.2.6 The Pleiades problem.The Pleiades problem is an arti�ial elestial mehanis problem of seven stars moving in the sameplane. Mathematially, it is desribed by a system of 14 seond-order di�erential equations, togetherwith 28 initial onditions, de�ning initial position and veloity for eah elestial body. The problemis not sti�, but it is omplex enough. Beause of its omplexity, it is inluded in several olletionsof test problems for ordinary di�erential equation solvers (see, e.g., Mazzia & Magherini (2008);Nowak et al. (2010).) Traditionally, the problem is solved for seven elestial objets, apparently asa simple simulation of the well-known Pleiades star luster. However, the problem an be easilyexpanded for any number of objets, not neessarily in the same plane. In this paper we shall useformulation and data taken from Hairer et al. (1993), as all olletions of test problems do.For every objet in the plane, position is de�ned by the vetor funtion −→ri = xi−→ux + yi−→uy, where
i = 1, . . . , 7, and −→ux, −→uy are the unit vetors along the x− and y−axis, respetively. Similarly,veloity is de�ned by the vetor funtions and d

−→ri
dt

= dxi
dt

−→ux +
dyi
dt
−→uy. The unknown funtions of theproblem are xi, yi, dxidt , dyidt for i = 1, . . . , 7, and they are all funtions of time, t. It is easy to derivethe 14 equations of motion for suh a system; together with the initial onditions generally adoptedin all similar tests, they form the initial value problem







d2xi
dt2

=
∑

j 6=imj (xi − xj) /r
3

2

ij

d2yi
dt2

=
∑

j 6=imj (yi − yj) /r
3

2

ij

,























xi (0) = [3, 3,−1,−3, 2,−2, 2]T

yi (0) = [3,−3, 2, 0, 0,−4, 4]T

dxi
dt

∣

∣

∣

t=0
= [0, 0, 0, 0, 0, 1.75,−1.5]T

dyi
dt

∣

∣

∣

t=0
= [0, 0, 0,−1.25, 1, 0, 0]T

, (10)



2 Using rkf45. 20
✞ ☎load("rkf45 .ma")$fx( i ):=sum( i f j#i then j*(onat(x, j)−onat(x, i ))/((onat(x, i)−onat(x, j))^2+(onat(y, i)−onat(y, j ))^2)^1.5else 0 , j ,1 ,7)$fy( i ):=sum( i f j#i then j*(onat(y, j)−onat(y, i ))/((onat(x, i)−onat(x, j))^2+(onat(y, i)−onat(y, j ))^2)^1.5else 0 , j ,1 ,7)$equs : flatten ( [makelist(onat(dx, i ) , i ,1 ,7) ,makelist(onat(dy, i ) , i ,1 ,7) ,makelist( fx( i ) , i ,1 ,7) ,makelist(fy( i ) , i ,1 ,7) ℄)$funs : flatten ( [makelist(onat(x, i ) , i ,1 ,7) ,makelist(onat(y, i ) , i ,1 ,7) ,makelist(onat(dx, i ) , i ,1 ,7) ,makelist(onat(dy, i ) , i ,1 ,7) ℄)$init :[3 ,3,−1,−3,2,−2,2,3,−3,2,0,0,−4,4,0,0,0,0,0,1.75,−1.5,0,0,0,−1.25,1,0,0℄$t_start :0$ t_end:3$sol : rkf45(equs , funs , init , [ t , t_start ,t_end℄ , report=true)$initial_points : [ disrete ,makelist ( [ init [ i ℄ , init [ i+7℄℄ , i ,1 ,7)℄$trajetories :makelist ( [ disrete ,map(lambda( [u℄ , part(u,[1+i ,8+i ℄ )) , sol ) ℄ , i ,1 ,7)$styles :append( [ style ℄ ,makelist ( [ lines ,4 ℄ , i ,1 ,7) , [ points ℄ )$olors : [ olor , red , green , blue ,magenta,yan, yellow ,blak ℄$legends :append( [ legend ℄ ,makelist(sonat("Body " , i ) , i ,1 ,7) , ["" ℄)$plot2d(endons( initial_points , trajetories) , styles , [ point_type , irle ℄ ,endons(blak , olors ) , [ xlabel ,"x" ℄ , [ ylabel ,"y"℄ , legends ,[ psfi le ,"Example_6a. eps"℄)$plot2d(makelist ( [ disrete ,map(lambda( [u℄ , part(u,[1,1+ i ℄ )) , sol ) ℄ , i ,1 ,7) , styles ,olors , [ xlabel ,"t" ℄ , [ ylabel ,"x_i (t)" ℄ , legends ,[ psfi le ,"Example_6b. eps"℄)$plot2d(makelist ( [ disrete ,map(lambda( [u℄ , part(u,[1,8+ i ℄ )) , sol ) ℄ , i ,1 ,7) , styles ,olors , [ xlabel ,"t" ℄ , [ ylabel ,"y_i (t)" ℄ , legends ,[ psfi le ,"Example_6. eps"℄)$
✡✝ ✆Listing 6: Maxima program for solving Eqs. (11).
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3 Sti� initial value problems. 22where mj are the masses of the objets, and rij = (xi − xj)
2 + (yi − yj)

2. In this example, we take
mj = j, and the problem is solved for t ∈ [0, 3].In order to solve Eqs. (10), we need to transform the seond-order di�erential equations to asystem of �rst-order di�erential equations. This is easily done by putting dxi

dt
= χi, dyidt = ψi, so thatEqs. (10) are now written as























dxi
dt

= χi
dyi
dt

= ψi
dχi
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=

∑

j 6=imj (xi − xj) /r
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dψi

dt
=

∑

j 6=imj (yi − yj) /r
3

2

ij
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xi (0) = [3, 3,−1,−3, 2,−2, 2]T

yi (0) = [3,−3, 2, 0, 0,−4, 4]T

χi (0) = [0, 0, 0, 0, 0, 1.75,−1.5]T

ψi (0) = [0, 0, 0,−1.25, 1, 0, 0]T

. (11)Listing 6 shows the Maxima program for solving the initial value problem (11). It is worth mentioninghere that Maxima o�ers the ability to de�ne the set of di�erential equations in a very elegant way,using built-in funtions onat and makelist. rkf45 returns the solution as a list, with elements inthe form [t,x1,...,x7,y1,...,y7,dx1,...,dx7,dy1,...,dy7℄, where t is the integration point,and x1,...,x7, y1,...,y7, dx1,...,dx7, dy1,...,dy7 are the values of the funtions xi, yi, χi =
dxi
dt
, ψi = dyi

dt
at that point. Graphial output of the program is shown in Fig. 8. Report of rkf45is as follows.------------------------------------------------------Info: rkf45:Integration points seleted: 1143Total number of iterations: 1144Bad steps orreted: 2Minimum estimated error: 3.8961905793680196E-8Maximum estimated error: 9.8286131077889909E-7Minimum integration step taken: 2.5152068765271884E-5Maximum integration step taken: 0.065073956846732------------------------------------------------------The algorithm seleted 1143 integration points. In a modern personal omputer, rkf45 solvesthe above problem in somewhat less than eight seonds. Compared to previous examples, thisomputation time is at least seven times larger. This is expeted, onsidering the fat we are solvinga set of 28 non-linear di�erential equations; the term r

− 3

2

ij =
(

(xi − xj)
2 + (yi − yj)

2
)− 3

2 , involved in
14 di�erential equations, is also a reason of the larger omputation time. As in previous examples,reduing auray, even slightly, would redue omputation time onsiderably. For example, settingabsolute tolerane to 5× 10−5 redues integration points and omputation time by about 62%.3 Sti� initial value problems.3.1 General disussion.Although a single, preise de�nition of �sti�ness� does not exist, an initial value problem is generallyonsidered as sti� if expliit numerial methods either work very slowly, or they don't work atall, beause the integration step needs to be so small that it is pratially impossible to solve the



3 Sti� initial value problems. 23problem. Suh a small step size is neessary not to ahieve auray requirements, but beausenumerial integration beomes unstable otherwise, giving ompletely erroneous results. In otherwords, the step size is ditated by stability requirements rather than by auray requirements. Themost ommon reason for this behavior is a set of di�erential equations where the derivatives of theunknown funtions depend on the funtions themselves in a very strong way. Typially, this meansthat solution may vary rather slowly in the majority of the integration interval, but there is at leastone region, often very narrow, where funtions vary rapidly, or even extremely rapidly, in very sti�problems. Another reason of sti�ness might be unusual initial onditions; the reader an �nd adetailed analysis of the term �sti�ness� in Hairer & Wanner 2002.It is worth emphasizing that not all di�ult problems are sti�, but all sti� problems are di�ultfor solvers not spei�ally designed for them. Speial methods, designed for solving sti� di�erentialequations, do exist in the literature; most notably, methods based on the bakward di�erentiationformula, also alled Gear methods, are known to work very well on sti� problems. More sophistiatedalgorithms, able to swith from non-sti� to sti� mode and vie versa, do exist as well. For example,the pakage ODEPACK (Hindmarsh (1983)) is an exellent olletion of Fortran solvers for bothnon-sti� and sti� initial value problems. Among them, the LSODAR solver (and its double-preisionversion, DLSODAR) swithes automatially between non-sti� and sti� methods (Petzold (1983).)In addition, DLSODAR is able to �nd the root of at least one of a set of onstraint funtions of theindependent and dependent variables, and stop integration at that point; this feature is partiularlyuseful for solving initial value problems where the domain of integration is not known in advane(see, e.g., Papasotiriou et al. (2007).)rkf45 is an expliit Runge-Kutta method, and, as suh, it is not spei�ally designed for solvingsti� di�erential equations. Its ability to adapt the step size makes it apable to deal with suhdi�ult problems, at least in several ases. However, as all expliit methods, and despite its adaptivestep size, rkf45 still needs many integration steps to solve a sti� problem, while a speial method,designed to solve sti� systems, would need muh less integration points to ahieve the same auray(but at higher omputational ost per step.) Consequently, rkf45, as every other expliit method, isnot the method of hoie for solving sti� problems. That being said, and given the lak of a betterway to solve sti� initial value problems in Maxima, we shall give some examples of suh problems,and show how they an be solved by rkf45.3.2 Examples of sti� problems.3.2.1 One �rst-order di�erential equation.A well-known example, whih an be used to demonstrate the meaning of sti�ness, is the initialvalue problem
dy

dx
= y2 − y3, y (0) = δ, x ∈

[

0,
2

δ

]

, (12)sometimes alled Shampine's ball of �ame. This problem might seem simple, but it is not. Theparameter δ plays a ruial role on the sti�ness of the problem. High values of δ make the problemnon-sti�, and easy to solve numerially. However, as δ is dereasing the problem beomes sti�er, andeventually muh more di�ult to solve. Listing 7 shows a Maxima program that solves the problemfor two representative values of δ: (a) δ = 0.01 (mildly sti�) and (b) δ = 0.00001 (very sti�.) Inboth ases, the absolute tolerane is set to 5× 10−8.
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✞ ☎load("rkf45 .ma")$x_start:0$d:0.01$ x_end:2/d$sol_nonstiff : rkf45(ŷ 2−y^3,y,d , [ x,x_start ,x_end℄ , absolute_tolerane=5e−8,report=true)$plot2d( [ disrete , sol_nonstiff ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ psfi le ,"Stiff_1a . eps"℄)$yonst : part(sol_nonstiff ,sublist_indies(sol_nonstiff ,lambda( [u℄ ,abs(1−u[2℄)<5e−6)))$print("Solution is essentially onstant for x >" ,yonst [1 ℄ [ 1 ℄ ) $print(length(yonst) ,"integration points were seleted in that region .")$d:0.00001$ x_end:2/d$sol_stiff : rkf45(ŷ 2−y^3,y,d , [ x, x_start ,x_end℄ , absolute_tolerane=5e−8,max_iterations=40000,report=true)$plot2d( [ disrete , sol_stiff ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ psfi le ,"Stiff_1b. eps" ℄)$yonst : part( sol_stiff , sublist_indies( sol_stiff ,lambda( [u℄ ,abs(1−u[2℄)<5e−6)))$print("Solution is essentially onstant for x >" ,yonst [1 ℄ [ 1 ℄ ) $print(length(yonst) ,"integration points were seleted in that region .")$
✡✝ ✆Listing 7: Maxima program for solving Eqs. (12).
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3 Sti� initial value problems. 26In Fig. 9a, the solution for δ = 0.01 is plotted. There is nothing really surprising in this ase;the plot is qualitatively the same as in Fig. 4a. rkf45 takes very small steps where it is needed,i.e., at the part of the urve where the slope is high; on the other hand, the step size is muh largerwhere solution y (x) varies slowly. The fat that the problem is not very sti� is also apparent in thereport returned by rkf45:------------------------------------------------------Info: rkf45:Integration points seleted: 100Total number of iterations: 118Bad steps orreted: 19Minimum estimated error: 1.8451422293479214E-13Maximum estimated error: 4.8629641270472728E-8Minimum integration step taken: 0.16629844052309Maximum integration step taken: 32.0------------------------------------------------------Here, minimum integration step taken is ≈ 0.17, and apparently orresponds to the interval where
y (x) varies quikly. On the other hand, maximum integration step taken is 32, orresponding tohigher values of x, where the step size does not need to be small. To make things more quantitative,a few ommands were added in Listing 7, in order to ompute how many integration points weretaken for the part of the urve where |1− y (x)| ≤ 5 × 10−6. We see that, for δ = 0.01, solutionis essentially onstant for x & 117, and rkf45 seleted 29 integration points in that region (29% ofthe total integration points,) whih is rather more than what was expeted; however, as it has beenpointed out already, the algorithm is generally onservative, and avoids too big step size hanges.To onlude, all the fats mentioned above are more or less expeted; there is nothing really unusualin the solution for δ = 0.01.Fig. 9b shows the solution for δ = 0.00001, and it is obvious that something is wrong in thisase. The algorithm selets only a few integration points in the beginning, and muh more pointswhere y (x) varies quikly; this is normal and expeted. However, rkf45 keeps using a very smallintegration step, even for higher values of x, where y (x) is essentially onstant, and equal to 1. Thereis no apparent reason for this behavior; a few steps should be more than enough in this interval.This is not a bug in rkf45, however; it is a diret onsequene of sti�ness.Let us examine what happened more thoroughly. This is what rkf45 reports about the ompu-tations:------------------------------------------------------Info: rkf45:Integration points seleted: 30247Total number of iterations: 35205Bad steps orreted: 4959Minimum estimated error: 1.9654044991423955E-19Maximum estimated error: 4.998424021413516E-8Minimum integration step taken: 0.16632940865998Maximum integration step taken: 51200.0------------------------------------------------------
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30165 integration points in that region (≈ 99.7% of the total integration points.) This seems to bea total waste of omputational e�ort and time, but in fat it is absolutely neessary for an expliitmethod like rkf45. Unlike the δ = 0.01 ase, the problem is very sti� for δ = 0.00001. Sti�nessan ause numerial instability if a large integration step is used, even if the funtion is essentiallyonstant. In fat, this is the usual de�nition for the term �sti�ness�; a very small step size is quiteexpeted if an expliit method is used to solve a sti� problem, even though auray requirementsould be satis�ed with muh larger integration steps. This is why an expliit method is de�nitely notthe method of hoie for suh kind of problems. Nevertheless, rkf45 was able to solve the problemwith great auray, albeit exessive omputational e�ort was needed.For omparison, the Fortran subroutine DLSODAR takes only 224 integration steps to solvethe problem for δ = 0.00001, with the same settings as in rkf45 (solution obtained by the Fortransolver is plotted in Fig. 10.) It is obvious that DLSODAR, whih is a solver spei�ally designedfor non-sti� and sti� problems as well, is muh more e�ient in this ase. Note, however, that theproblem solved here is extremely sti� for the purpose of demonstrating the meaning of sti�ness, inan extreme ase. This explains the huge number of integration steps taken by rkf45; in pratie,many sti� problems do not need suh a huge amount of omputations to be solved, even if an expliitmethod like rkf45 is used.
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✞ ☎load("rkf45 .ma")$x_start:0$ x_end:4$ funs : [ y1,y2℄$ equs:[998*y1+1998*y2,−999*y1−1999*y2℄$eigenvalues(jaobian(equs , funs )) ;sol : rkf45(equs , funs , [ 1 ,0 ℄ , [x,x_start ,x_end℄ , report=true)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"x" ℄ , [ ylabel ,"y_1, y_2"℄ ,[ legend ,"y_1(t)" ,"y_2(t)" ℄ , [ psfi le ,"Stiff_2a . eps"℄)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[x, x_start ,0 .02 ℄ , [ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ ,[ xlabel ,"x" ℄ , [ ylabel ,"y_1, y_2" ℄ , [ legend ,"y_1(t)" ,"y_2(t)"℄ ,[gnuplot_preamble ,"set key enter right" ℄ , [ psfi le ,"Stiff_2b. eps" ℄)$y1_exat(x):=2*exp(−x)−exp(−1000*x)$y2_exat(x):=−exp(−x)+exp(−1000*x)$errors : part(map(lambda( [u ℄ , [ abs(y1_exat(u[1℄)−u[2 ℄) ,abs(y2_exat(u[1℄)−u[3 ℄ ) ℄ ) ,sol ) , allbut(1))$print("Maximum atual error :" ,lmax( flatten(errors )))$
✡✝ ✆Listing 8: Maxima program for solving Eqs. (13).3.2.2 A linear sti� problem.A very ommon example of a sti� initial value problem is

{ dy1
dx

= 998y1 + 1998y2
dy2
dx

= −999y1 − 1999y2
,

{

y1 (0) = 1
y2 (0) = 0

(13)(see, e.g. Press et al. (1992, Eqs. (16.6.1-16.6.2)).) The oe�ients in the right-hand side of theseequations may vary in the literature, but the general idea is the same: the derivatives dy1
dx
,dy2
dx

dependstrongly on the funtions y1 and y2. The usual test for sti�ness is to derive the Jaobian of the right-hand side of the di�erential equations, and ompute its eigenvalues. In this ase, the eigenvalues ofthe Jaobian,
J =

∂ (998y1 + 1998y2,−999y1 − 1999y2)

∂ (y1, y2)
=

[

998 1998
−999 −1999

]

, (14)are λ1 = −1 and λ2 = −1000, as one an easily verify using Maxima. The fat that |λ2| ≫ |λ1| is alear indiation of sti�ness. Furthermore, the sti� nature of a problem an be veri�ed if an analytisolution is available. In our example, the partial solution that satis�es the initial onditions is
{

y1 (x) = 2e−x − e−1000x

y2 (x) = −e−x + e−1000x , (15)whih an be easily obtained in Maxima. Now, the reason of sti�ness (and, onsequently, numerialinstability) is the term e−1000x, whih is important for very small values of x, but it is ompletelynegligible otherwise (it beomes essentially zero very quikly.)
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3 Sti� initial value problems. 30The Maxima program that solves the sti� problem (13) is shown in Listing 8. The essentialpart is the all of rkf45, whih does not di�er from that of any other program solving a system ofdi�erential equations (the problem is solved using default absolute tolerane, 10−6.) Let us have alook at the report now:------------------------------------------------------Info: rkf45:Integration points seleted: 1473Total number of iterations: 1695Bad steps orreted: 223Minimum estimated error: 6.4847649710556282E-8Maximum estimated error: 9.9734487940981384E-7Minimum integration step taken: 2.4897150300248846E-5Maximum integration step taken: 0.0043726569115022------------------------------------------------------What we see here is that 1473 integration points were seleted. Bad (but re�ned and orreted)steps oured 223 times; suh a large number of bad steps is rather ommon in sti� problems, butit is not an indiation of sti�ness by itself.There is one interesting fat that needs to be disussed here. The algorithm estimated thatthe maximum error is ≈ 9.98 × 10−7, marginally lower than requested auray, as usual. In thispartiular example, the exat analyti solution is available, so we an hek the auray of thenumerial solution obtained. The atual maximum error is ≈ 5.47 × 10−9. In other words, atualerror is more than two orders of magnitude lower than estimated error. This is unusual, beause,as already pointed out, rkf45 returns a solution more aurate than requested, but the atual erroris typially lose to the error estimated by the algorithm. However, it is easy to understand whathappened. The problem is sti�, so integration step needed to be kept small, even though a larger stepwould satisfy auray requirements. This means that, in sti� problems, the results are expetedto be onsiderably more aurate than requested, exatly beause a very small integration step willbe used, due to numerial stability requirements. This is atually the ase here, and it is a learindiation of sti�ness.The graphial output of the program is shown in Fig. 11. The �vertial� segments of the urvesnear x = 0 are not artifats of the plotting utility. It is the exat behavior of the solution; the valuesof y1 (x) and y2 (x) hange extremely rapidly at very small values of x, due to the fator e−1000xinvolved in Eqs. (15). However, the algorithm was able to detet this behavior and at aordingly,by reduing the step as required. In fat, rkf45 has seleted 167 integration points (more than
11% of the total points) in a tiny interval near the origin, x ∈ [0, 0.02] (0.5% of the total integrationinterval.) Solution for x ∈ [0, 0.02] is plotted in Fig. 11b. One an see how fast both y1 (x) and y2 (x)are hanging in that tiny interval, foring rkf45 to redue the step, and start to inrease it againafter x ≈ 0.01. The situation is similar to that in � 2.2.2 and � 2.2.3, but in the present ase the needfor a small step size is muh more apparent. It is worth emphasizing, however, that, although theintegration step is inreasing after x ≈ 0.01, it is still kept relatively small; 1306 integration pointswere needed for x ∈ [0.02, 4], whih is too muh, onsidering the smooth behavior of the solution inthat interval. Again, this is due to the sti�ness of the problem; integration step size is kept smallbeause of stability (not auray) requirements. A di�erent problem, with a solution similar to thatin Fig. 11a (but without the steep part of the urve near x = 0) would need muh less integrationpoints to be solved, with the same auray requirements.



3 Sti� initial value problems. 313.2.3 A sti� van der Pol osillator.In � 2.2.4 an initial value problem involving the var der Pol di�erential equation was solved. In thissetion we shall solve the problem for a higher value of the dumping parameter, µ, whih makesthe problem sti�. We shall use a di�erent form of the di�erential equation, however (see, e.g.,Hairer & Wanner (2002), Eq.. (1.5'),)
dx2

dt2
=

1

ǫ

(

(

1− x2
) dx

dt
− x

)

= 0,

{

x (0) = 2
dx
dt

∣

∣

x=0
= 0

, (16)where ǫ is a positive parameter, orresponding to 1
µ
in Eqs. (4). Eqs. (16) are more onvenientfor sti� problems, beause the integration interval does not need to be hanged, depending on theparameter, as it was the ase in Eqs. (4); instead, integration interval is �xed to t ∈ [0, 2]. Lowvalues of ǫ orrespond to sti� problems; in this example, we shall use the value ǫ = 0.01.In order to solve the problem, the seond-order di�erential equation must be transformed to asystem of two �rst-order di�erential equations, as in � 2.2.4. By putting x = x1, dxdt = x2, Eqs. (16)are written as

{

dx1
dt

= x2
dx2
dt

= 1
ǫ

((

1− x21
)

x2 − x1
) ,

{

x1 (0) = 2
x2 (0) = 0

. (17)Listing 9 shows the Maxima program that solves this problem. Graphial output of the programis shown in Fig. 12; Note the peaks of dx
dt

in Fig. 12a, whih are atually the reason of sti�ness inthis problem. Solution is initially omputed with default auray tolerane, 10−6. Report given byrkf45 in that ase is------------------------------------------------------Info: rkf45:Integration points seleted: 2148Total number of iterations: 2165Bad steps orreted: 18Minimum estimated error: 3.7395389218163665E-8Maximum estimated error: 8.8569168942399216E-7Minimum integration step taken: 6.08069431864205E-5Maximum integration step taken: 0.0027205802470264------------------------------------------------------In this ase, 2148 integration points were needed. Minimum integration step is ≈ 6.1× 10−5 � verysmall, ompared to the integration interval, [0, 2]. Suh a small step is atually needed in the steepparts of the urve dx
dt
. In partiular, 664 integration points (≈ 31% of the total points) were used inthe interval t ∈ [0.8, 1], where the �rst peak of dx

dt
lies, and a similar amount of integration points isused for the seond peak.Apparently, a �xed-step method would fail to ompute the solution aurately, unless a verysmall integration step would be used globally, whih would result in higher omputational times. Inthis partiular example, a �xed-step Runge-Kutta method of fourth order would need at least 32891integration points to ahieve an auray equal to that obtained by rkf45 using 2148 integrationpoints. In terms of funtion evaluations (whih is often used as a measure of the omputation time,)a Runge-Kutta method of fourth order would thus need 131560 funtion evaluations, while rkf45
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✞ ☎load("rkf45 .ma")$t_start :0$ t_end:2$ epsilon :1e−2$funs : [ x1,x2 ℄$ equs : [ x2,((1−x1^2)*x2−x1)/epsilon ℄$sol : rkf45(equs , funs , [ 2 ,0 ℄ , [ t , t_start ,t_end℄ , report=true)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ ,[ style , [ lines , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t ) , x'( t)" ℄ ,[ legend ,"x(t)" ,"x'( t)" ℄ , [ gnuplot_preamble ,"set key top le ft" ℄ ,[ psfi le ,"Stiff_3a . eps" ℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, allbut (1))) , sol ) ℄ , [ style , l ines [4 ℄ ℄ ,[ olor ,magenta℄ , [ xlabel ,"x" ℄ , [ ylabel ,"x'" ℄ , [ psfi le ,"Stiff_3b. eps"℄)$sol : rkf45(equs , funs , [ 2 ,0 ℄ , [ t , t_start ,t_end℄ , absolute_tolerane=5e−3,report=true)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ , [ x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t)" ℄ ,[ legend ,"adaptive step size (rkf45 results )" ℄ , [ psfi le ,"Stiff_3 . eps" ℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ , [ x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x'( t)" ℄ , [ olor , red ℄ ,[ legend ,"adaptive step size (rkf45 results )" ℄ , [ psfi le ,"Stiff_3d. eps" ℄)$sol_rk: rk(equs , funs , [ 2 ,0 ℄ , [ t , t_start ,t_end,(t_end−t_start)/(length( sol)−1)℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol_rk ) ℄ , [x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x(t)" ℄ ,[ legend ,"fixed step (rk results )" ℄ , [ psfi le ,"Stiff_3e . eps"℄)$plot2d( [ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol_rk ) ℄ , [x,0.8 ,1℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ xlabel ,"t" ℄ , [ ylabel ,"x'( t)" ℄ ,[ legend ,"fixed step (rk results )" ℄ , [ olor , red ℄ , [ psfi le ,"Stiff_3f . eps" ℄)$
✡✝ ✆Listing 9: Maxima program for solving Eqs. (17).
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−3. For omparison, Figs. (e)and (f) orrespond to solution obtained by rk, using the same number of integration points,as in () and (d).



3 Sti� initial value problems. 34needs 12990 funtion evaluations (taking into aount that 18 steps were rejeted.) In other words,rkf45 is about ten times faster in this example.To visualize the di�erene between rkf45 and a �xed-step method, we solve the problem again,this time with absolute tolerane set to 5× 10−3. This would redue the integration points needed,so that it will be easier to see the di�erene graphially. Indeed, report given by rkf45 is now------------------------------------------------------Info: rkf45:Integration points seleted: 291Total number of iterations: 335Bad steps orreted: 45Minimum estimated error: 2.953992239004648E-5Maximum estimated error: 0.0049405216100875Minimum integration step taken: 5.0200898447719971E-4Maximum integration step taken: 0.019136888549425------------------------------------------------------That is, only 291 integration points were needed, while solution returned is still aurate to at leasttwo deimal digits. Results obtained that way are shown in Figs. 12-12d, where solution is plottedaround the �rst peak of dx
dt
. We also solve the problem using Maxima's funtion rk (a �xed-stepmethod); we set the �xed integration step in rk so that a total of 291 integration points are used,as in rkf45 above. Plots of the results obtained that way are shown in Figs. 12e-12f. It is obviousthat a �xed-step method fails to give an aurate solution.3.2.4 The Brusselator.The Brusselator (1D di�usion) is an initial value problem, onsisting of two �rst-order di�erentialequations, together with two initial onditions. It is inluded in several olletions of sti� initial valueproblems (see, e.g., Hairer & Wanner (2002); Nowak et al. (2010).) Stritly speaking, the problemis not very sti�, but it is ertainly very interesting as a test for initial value problem solvers. Thetypial form of the Brusselator equations found in the literature is

{ dy1
dx

= A+ y21y2 − (B + 1) y1
dy2
dx

= By1 − y21y2
,

{

y1 (0) = 1
y2 (0) = 4.2665

, (18)where A = 2, B = 8.533, and the problem is solved for x ∈ [0, 20].A Maxima program for solving Eqs. (18) is given in Listing 10. Solution obtained with defaultabsolute tolerane is shown in Fig. 13, where it is apparent that both y1 (x) and y2 (x) exhibit abrupthanges and very high slopes periodially. As in all previous ases, rkf45 deteted this behaviorand redued integration step size aordingly. Report given by rkf45 is------------------------------------------------------Info: rkf45:Integration points seleted: 1115Total number of iterations: 1150Bad steps orreted: 36Minimum estimated error: 5.3027036774583149E-8
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✞ ☎load("rkf45 .ma")$x_start:0$ x_end:20$ y_start:[1 ,4.2665℄$ A:2$ B:8.533$equs : [A+y1^2*y2−(B+1)*y1,B*y1−y1^2*y2℄$sol : rkf45(equs , [ y1,y2 ℄ , y_start , [ x,x_start ,x_end℄ , report=true)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ , [ style , [ lines ,4 ℄ ℄ ,[ ylabel ,"y_1, y_2" ℄ , [ legend ,"y_1(x)" ,"y_2(x)" ℄ , [ psfi le ,"Stiff_4a . eps"℄)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol ) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol ) ℄ ℄ , [ x,5.15 ,5.4℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ ,[ ylabel ,"y_1, y_2 (rkf45 results )" ℄ ,[ legend ,"y_1(x)" ,"y_2(x)" ℄ , [ psfi le ,"Stiff_4b. eps" ℄)$sol_rk: rk(equs , [ y1,y2 ℄ , y_start ,[x,x_start ,x_end,(x_end−x_start)/(length( sol)−1)℄)$plot2d ( [ [ disrete ,map(lambda( [u℄ , part(u, [1 ,2 ℄ )) , sol_rk) ℄ ,[ disrete ,map(lambda( [u℄ , part(u, [1 ,3 ℄ )) , sol_rk ) ℄ ℄ , [ x,5.15 ,5.4℄ ,[ style , [ linespoints , 4 ℄ ℄ , [ point_type , bullet ℄ ,[ ylabel ,"y_1, y_2 (rk results )"℄ ,[ legend ,"y_1(x)" ,"y_2(x)" ℄ , [ psfi le ,"Stiff_4 . eps" ℄)$
✡✝ ✆Listing 10: Maxima program for solving Eqs. (18).
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Fig. 13: Graphial output of Listing 10 (part I.)Maximum estimated error: 9.8233659815093057E-7Minimum integration step taken: 3.3850814947041446E-4Maximum integration step taken: 0.21818753157269------------------------------------------------------We see that 1115 integration points were seleted by rkf45. This large number of integration pointsan be explained by the very high slopes of y1 (x) and y2 (x). Beause of this, minimum step size isalso very small, ≈ 3.4× 10−4.It is easy to do estimations about the omputational time, as in � 3.2.3. In this example, a�xed-step Runge-Kutta method of fourth order would need at least 59084 integration points toahieve the same auray as in rkf45 above. This means that 236332 funtion evaluations wouldbe needed, while rkf45 needs 6900 funtion evaluations (we take into aount that 36 steps wererejeted.) Consequently, rkf45 is about 34 times faster in this example.For omparison, we solve the problem again, this time using a �xed-step method (rk); we setthe �xed step size so that rk uses 1115 integration points, as in rkf45 above. Results obtained byrkf45 and rk are plotted in Fig. 14; we fous on the interval x ∈ [5.15, 5.4], where both y1 (x) and
y2 (x) are very steep. Although both methods use exatly the same number of integration points, rkfails to ompute an aurate solution due to its �xed step size; integration points are just distributeduniformly along the integration interval, and thus only a 14 integration points lie in the small interval
[5.15, 5.4] (this is only 1.25% of the total integration interval.) On the other hand, rkf45 reduedthe step size in that interval, so that 207 integration points (≈ 18.6% of the total integration points)were seleted for x ∈ [5.15, 5.4]. That way, rkf45 managed to get an aurate solution.
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(a) Solution obtained by rkf45 for x ∈ [5.15, 5.4].
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(b) Solution obtained by rk, using the same number of integration points as in rkf45.Fig. 14: Graphial output of Listing 10 (part II.)
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