
   

                                                                                                                                           Page 1 of 8 

Building NeXus with Visual Studio 2008 

Pedro Vicente (pedro.vicente@space-research.org) 

 

 

1 Introduction 

Open the file /windows/nexus.sln with Visual Studio. 

2 Layout 

The solution layout is shown in the figure in the left, 

a Visual Studio solution with 4 folders: applications, 

nexus, bindings and test. 

2.1 nexus folder 

The folder nexus contains a project named nexus 

that contains the C source code for the NeXus API. 

The folder contains 4 subfolders named ‘header’ , 

the C header files currently located in /src of the 

NeXus distribution, ‘include’ , the C header files 

currently located in /include of the NeXus 

distribution, ‘src’ , the C source files currently 

located in /src of the NeXus distribution and 

‘Windows_extra/include’ that mimics a folder with 

the same name in the NeXus distribution.  

The ‘Windows_extra/include’ folder contains the 

‘nxconfig.h’ file, that contains several Visual Studio 

system dependent macros for use in the NeXus API. 

Unlike the UNIX systems, this file is not generated 

automatically by the configure process in those 

systems. 

 

 

 

 



   

                                                                                                                                           Page 2 of 8 

 

 

 

 

2.2 bindings folder 

The bindings folder contains a project named 

‘nexusCPP’ that contains the C++ binding of the 

NeXus library. 

 

 



   

                                                                                                                                           Page 3 of 8 

 

2.3 applications folder 

The figure on the left contains the projects regarding 

the applications and test folders. For applications 

the projects are nxtranslate, nxconvert, nxdir, 

nxingest, nxsummary, nxvalidate and nxbrowse.  

2.4 test folder 

For the test folder, the projects are leak_test1, 

leak_test2, leak_test3, test_nxunlimited and 

napi_test. 

These names duplicate the programs currently built 

for the UNIX systems. 

 

 

 

 

3 Add additional libraries 

A feature of the Visual Studio IDE is that it allows 

inserting and deleting projects by means of a 

Graphical User Interface. Thus, it is possible to 

include in the solution projects for the base libraries 

that NeXus depends, such as HDF5 (and its 

dependencies SZLIB and ZLIB), HDF4 (and its 

dependency JPEG), and the XML libraries. This 

allows advanced developers to have direct access to 

the code of the underlying libraries, for debugging 

purposes, for example. Since these external libraries 

are not distributed with NeXus, these projects are 

not proposed to be included in the Visual Studio 

Solution, but can be made available for interested 

developers. 

 

 



   

                                                                                                                                           Page 4 of 8 

 

4 Building NeXus with the base libraries 

To actually store NeXus files on physical media, different low-level file formats are available, namely 

HDF4, HDF5, and XML. The NeXus library may be configured to support all of them, or any nonempty 

subset. Applications that create NeXus files need to decide (or let the user decide) in which low-level 

format data shall be stored. This section shows how to modify several Visual Studio project settings to 

build the NeXus API and applications with the underlying libraries HDF5, HDF4 or MXML.  

To compile and link a NeXus application with any underlying library, two actions must be done: 

• add a preprocessor definition for the underlying library for the NeXus library Visual Studio project 

• add the underlying library name and path for each application Visual Studio project 

4.1 NeXus library Visual Studio project settings 

The preprocessor definitions are entered in the C/C++, Preprocessor, Preprocessor Definitions Property 

Page, shown below 

Figure 4.1: the C/C++, Preprocessor, Preprocessor Definitions 

 

 



   

                                                                                                                                           Page 5 of 8 

 

 

The library path of the underlying library must also be entered. This is done in the C/C++, General, 

Additional Include Directories of the nexus project file, shown below. 

 

 

Figure 4.2: the C/C++, General, Additional Include Directories 

 

 

 

4.2 Applications project settings 

To library name to be linked is entered in the Linker Input Property Page (Figure 4.3), in the Additional 

Dependencies field. Either the literal library name or a Windows system environment variable1 with the 

                                                      
1
 To define an environment variable in Windows 7, click Start, right-click Computer, and select Properties. Select Advanced 

System Settings. Then, click the Environment Variables button. 



   

                                                                                                                                           Page 6 of 8 

library name or name with full path can be used. Figure 4.3 shows an example of NXBrowse linked with 

the HDF5 library: The following environment variables were defined, for the HDF5, ZLIB and SZIP 

libraries2, LIB_HDF5, LIB_ZLIB, LIB_SZIP with the names of those libraries. Then, in the NeXus application 

Linker Input Property Page, in the Additional Dependencies field, the following must be entered 

 

 $(LIB_HDF5) $(LIB_ZLIB) $(LIB_SZIP) 

 

Figure 4.3: Linker Input Property Page and additional libraries in Additional Dependencies 

 

 

An additional step is to add the library path to be linked for each application. This is done in the Linker 

General, Additional Library Directories field, shown in Figure 4.4. This step can be omitted if the 

environment variable points to the full library path.  

 

 

                                                      
2
 The HDF5 library needs the SZIP and ZLIB libraries 



   

                                                                                                                                           Page 7 of 8 

Figure 4.4: Linker General, Additional Library Directories 

 

 

Both the HDF5 and HDF4 base libraries are distributed from the HDF Group (http://www.hdfgroup.org/). 

These instructions assume building using the HDF Group’s distributed Visual Studio libraries. 

4.3 Building NeXus with HDF5 

The following table shows the preprocessor definitions and libraries needed to compile with the HDF5 

library. The table also shows example names for environment variables for each underlying library. HDF5 

depends also on external libraries (SZIP, ZLIB). 

Preprocessor symbols Libraries needed Environment variables 

hdf5 LIB_HDF5 

szip LIB_SZIP 

HDF5, H5_USE_16_API 

zlib LIB_ZLIB 



   

                                                                                                                                           Page 8 of 8 

4.4 Building NeXus with HDF4 

The following table shows the preprocessor definition and libraries needed to compile with the HDF4 

library. The table also shows example names for environment variables for each underlying library. HDF4 

depends also on external libraries (SZIP, ZLIB, JPEG) and one library included in the HDF4 distribution, 

XDR. The HDF4 Windows distribution actually generates 2 libraries: the single file HDF library, and the 

multi file HDF library, shown here as the LIB_HDF4 and LIB_MFHDF4 environment variable names.  

 

Preprocessor symbols Libraries needed Environment variables 

hdf4 LIB_MFHDF4, LIB_HDF4 

xdr LIB_XDR 

szip LIB_SZIP 

zlib LIB_ZLIB 

HDF4 

jpeg LIB_JPEG 

 

4.5 Building NeXus with MXML 

The following table shows the preprocessor definition and library needed to compile with the Mini-XML 

library (http://www.minixml.org/). The table also shows an example name to use in the definition of an 

environment variable. 

Preprocessor symbols Libraries needed Environment variables 

MXML mxml LIB_MXML 

 

 


