
NFSTRACE USER AND DEVELOPER MANUAL
Version 0.4.0

NFSTRACE User and developer manual

EPAM Systems

Copyright 2014, 2015 EPAM Systems

This documentation is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

For more details see the file LICENSE in the source of nfstrace.

This manual provides basic instructions on how to use nfstrace to monitor NFS and CIFS activity and
how to develop pluggable analysis modules.

Nfstrace User and Developer Manual 1 November 26, 2015

CONTENTS CONTENTS

Contents

1 INTRODUCTION 3
1.1 PORTABILITY . 3

2 USAGE 4
2.1 OPTIONS . 4
2.2 RUNNING MODES . 5
2.3 PACKETS FILTRATION . 5
2.4 DUMP FILE FORMAT . 5
2.5 USAGE EXAMPLES . 5

2.5.1 AVAILABLE OPTIONS . 5
2.5.2 ONLINE TRACING . 5
2.5.3 ONLINE ANALYSIS . 6
2.5.4 ONLINE DUMPING AND OFFLINE ANALYSIS . 6
2.5.5 ONLINE DUMPING, COMPRESSION AND OFFLINE ANALYSIS 6
2.5.6 ONLINE DUMPING WITH FILE LIMIT, COMPRESSION AND OFFLINE ANALYSIS 6
2.5.7 VISUALIZATION . 7

3 ANALYZERS 7
3.1 OPERATION BREAKDOWN ANALYZER (LIBBREAKDOWN.SO) 7
3.2 WATCH (LIBWATCH.SO) . 10
3.3 JSON ANALYZER (LIBJSON.SO) . 10

4 IMPLEMENTATION DETAILS 11
4.1 PAYLOAD FILTRATION . 11
4.2 PLUGGABLE ANALYSIS MODULES . 11
4.3 GENERAL SCHEMA . 12

Nfstrace User and Developer Manual 2 November 26, 2015

1 INTRODUCTION

1 INTRODUCTION

nfstrace performs live Ethernet 1 Gbps 10 Gbps packets capturing and helps to determine NFS and CIFS pro-
cedures in raw network traffic. Furthermore, it performs filtration, dumping, compression, statistical analysis,
visualization and provides the API for custom pluggable analysis modules.

nfstrace captures raw packets from an Ethernet interface using libpcap interface to Linux (LSF) or
FreeBSD (BPF) implementations. At the moment it is assumed that libpcap delivers correct TCP and UDP
packets. Assembling of IP packets from ethernet frames and IP packets defragmentation are performed in the
operating system’s kernel.

The application has been tested on the workstations with integrated 1 Gbps NICs (Ethernet 1000baseT/Full).
Currently nfstrace supports the following protocols:

Ethernet | IPv4 | IPv6 | UDP | TCP | NFSv3 | NFSv4 | NFSv4.1 | CIFSv1 | CIFSv2

1.1 PORTABILITY

The application has been developed and tested on GNU/Linux (Fedora 20, OpenSUSE 13.2, Ubuntu 14.04/14.10,
CentOS 7, Arch Linux, Alt Linux 7.0.5) and FreeBSD (FreeBSD 10.1). It is written in C++11 programming
language and uses standard POSIX interfaces and the following libraries: libpthread, libpcap, libstdc++.

Nfstrace User and Developer Manual 3 November 26, 2015

2 USAGE

2 USAGE

2.1 OPTIONS

-m, --mode=live|dump|drain|stat

Set the running mode (see the description below) (default: live).
-i, --interface=INTERFACE

Listen interface, it is required for live and dump modes (default: searches for the lowest numbered,
configured up interface (except loopback)).

-f, --filtration="filter"

Specify the packet filter in BPF syntax; for the expression syntax, see pcapfilter(7) (default: ”port
2049 or port 445”).

-s, --snaplen=1..65535

Set the max length of captured raw packet (bigger packets will be truncated). Can be used only for
UDP (default: 65535).

-t, --timeout=milliseconds

Set the read timeout that will be used while capturing (default: 100).
-b, --bsize=MBytes

Set the size of the operating system capture buffer in MBytes; note that this option is crucial for
capturing performance (default: 20).

-p, --promisc

Put the capturing interface into promiscuous mode (default: true).
-d, --direction=in|out|inout

Set the direction for which packets will be captured (default: inout).
-a, --analysis=PATH#opt1,opt2=val,...

Specify the path to an analysis module and set its options (if any).
-I, --ifile=PATH

Specify the input file for stat mode, ’-’ means stdin (default: nfstrace{filter}.pcap).
-O, --ofile=PATH

Specify the output file for dump mode, ’-’ means stdout (default: nfstrace-{filter}.pcap).
–log, –log=PATH

Specify the log file (default: nfstrace.log).
-C, --command="shell command"

Execute command for each dumped file.
-D, --dump-size=MBytes

Set the size of dumping file portion, 0 means no limit (default: 0).
-E, --enum=interfaces|plugins|-

Enumerate all available network interfaces and and/or all available plugins, then exit; please note
that interfaces can’t be listed unless nfstrace was built against the recent version of libpcap that
supports the pcap findalldevs() function (default: none).

-M, –msg-header=1..4000
Truncate RPC messages to this limit (specified in bytes) before passing to a pluggable analysis module
(default: 512).

-Q, --qcapacity=1..65535

Set the initial capacity of the queue with RPC messages (default: 4096).
-T, --trace

Print collected NFSv3/NFSv4/NFSv4.1/CIFSv2 procedures, true if no modules were passed with -a
option.

-Z, --droproot=username

Drop root privileges after opening the capture device.
-v, --verbose=0|1|2

Specify verbosity level (default: 1).
-h, --help

Print help message and usage for modules passed with -a option, then exit.

Nfstrace User and Developer Manual 4 November 26, 2015

2.2 RUNNING MODES 2 USAGE

2.2 RUNNING MODES

nfstrace can operate in four different modes:

• online analysis (–mode=live): performs online capturing, filtration and live analysis of detected NFS/CIFS
procedures using a pluggable analysis module or prints out them to stdout (-T or --trace options);

• online dumping (–mode=dump): performs online traffic capturing, filtration and dumping to the output
file (specified with -O or --ofile options);

• offline analysis (–mode=stat): performs offline filtration of the .pcap that contains previously captured
traces and performs analysis using a pluggable analysis module or prints found NFS/CIFS procedures to
stdout (-T or trace options);

• offline dumping (–mode=drain): performs a reading of traffic from the .pcap file (specified with -I or
--ifile options), filtration, dumping to the output .pcap file (specified with -O or --ofile options) and
removing all the packets that are not related to NFS/CIFS procedures.

2.3 PACKETS FILTRATION

Internally nfstrace uses libpcap that provides a portable interface to the native system API for capturing network
traffic. By so doing, filtration is performed in the operating system’s kernel. nfstrace provides a special option
(-f or -filtration) for specifying custom filters in BPF syntax.

The default BPF filter in nfstrace is port 2049 or port 445, which means that each packet that is delivered
to user-space from the kernel satisfies the following conditions: it has IPv4 or IPv6 header and it has TCP and
UDP header with source or destination port number equals to 2049 (default NFS port) or 445 (default CIFS
port).

The reality is that this filter is very heavy and support of IPv6 is experimental, so if you want to reach
faster filtration of IPv4-only traffic we suggest to use the following BPF filter: ip and port 2049 or port 445.

2.4 DUMP FILE FORMAT

nfstrace uses libpcap file format for input and output files so any external tool (e.g. Wireshark) can be used in
order to inspect filtered traces.

2.5 USAGE EXAMPLES

In this sections some use cases will be explained. Every next example inherit something from the previous ones,
so we suggest to read all of them from the beginning.

2.5.1 AVAILABLE OPTIONS

The following command demonstrates available options of the application and plugged analysis modules (at-
tached with --analysis or -a options). Note that you can pass more than one module here.

nfstrace -help --analysis=libjson.so

2.5.2 ONLINE TRACING

The following command will run nfstrace in online analysis mode (specified with --mode or -m options) without a
pluggable analysis module. It will capture NFS traffic transferred over TCP or UDP with source or destination
port number equals to 2049 and will simply print them out to stdout (-T or --trace options). Capturing is
over when nfstrace receives SIGINT (Control-C). Note that capturing from network interface requires superuser
privileges.

nfstrace -mode=live --filtration="ip and port 2049" -T

Nfstrace User and Developer Manual 5 November 26, 2015

2.5 USAGE EXAMPLES 2 USAGE

2.5.3 ONLINE ANALYSIS

The following command demonstrates running nfstrace in online analysis mode. Just like in the previous example
it will capture NFS traffic transferred over TCP or UDP with source or destination port number equals to 2049
and then it will perform Operation Breakdown analysis using pluggable analysis module libbreakdown.so.

nfstrace -mode=live -filtration=ip and port 2049 --analysis=libbreakdown.so

2.5.4 ONLINE DUMPING AND OFFLINE ANALYSIS

The following example demonstrates running nfstrace in online dumping and offline analysis modes. At first
nfstrace will capture NFS traffic transferred over TCP or UDP with source or destination port number equals to
2049 and will dump captured packets to dump.pcap file (specified with --ofile or -O options). At the second run
nfstrace will perform offline Operation Breakdown analysis using pluggable analysis module libbreakdown.so.

Dump captured packets to dump.pcap

nfstrace --mode=dump

--filtration="ip and port 2049"

-O dump.pcap

Analyse dump.pcap using libbreakdown.so

nfstrace --mode=stat

-I dump.pcap

--analysis=libbreakdown.so

2.5.5 ONLINE DUMPING, COMPRESSION AND OFFLINE ANALYSIS

The following example demonstrates running nfstrace in online dumping and offline analysis modes. Since dump
file can easily exhaust disk space, compression makes sense.

At first nfstrace will capture NFS traffic transferred over TCP or UDP with source or destination port
number equals to 2049 and will dump captured packets to dump.pcap file.

Note that compression is done by the external tool (executed in script passed with --command or -C

options) and it will be executed when capturing is done. The output file can be inspected using some external
tool as described in 2.4.

At the second run nfstrace will perform offline analysis. Again, the external tool (bzcat in this example)
is used in order to decompress previously saved dump. nfstrace will read stdin (note the -I - option) and
perform offline analysis using Operation Breakdown analyzer.

Dump captured procedures to dump.pcap file.

Compress output using bzip2 when capturing is over.

nfstrace --mode=dump

--filtration="ip and port 2049"

-O dump.pcap

-C "bzip2 -f -9"

Extract dump.pcap from dump.pcap.bz2 to stdin.

Read stdin and analyze data with libbreakdown.so module.

bzcat dump.pcap.bz2 | nfstrace --mode=stat

-I -

--analysis=libbreakdown.so

2.5.6 ONLINE DUMPING WITH FILE LIMIT, COMPRESSION AND OFFLINE ANALYSIS

This example is similar to the previous one except one thing: output dump file can be very huge and cause
problems in some situations, so nfstrace provides the ability to split it into parts.

At first nfstrace will be invoked in online dumping mode. Everything is similar to the previous example
except -D (--dump-size) option: it specifies the size limit in MBytes, so dump file will be split according to
this value.

At the second run nfstrace will perform offline analysis of captured packets using Operation Breakdown
analyzer.

Please note that only the first dump file has the pcap header.

Nfstrace User and Developer Manual 6 November 26, 2015

3 ANALYZERS

Dump captured procedures to the multiple files and compress them.

nfstrace --mode=dump --filtration="ip and port 2049" -O dump.pcap -D 1 -C "bzip2 -f -9"

get list of parts in the right order:

dump.pcap.bz2

dump.pcap-1.bz2

parts=$(ls dump.pcap*.bz2 | sort -n -t - -k 2)

Extract main dump.pcap and parts from dump.pcap.bz2 to stdin.

Read stdin and analyze data with libbreakdown.so module.

bzcat $parts | nfstrace --mode=stat

-I -

--analysis=libbreakdown.so

2.5.7 VISUALIZATION

This example demonstrates the ability to plot graphical representation of data collected by Operation Break-
down analyzer.

nst.sh is a shell script that collects data generated by analyzers and passes it to Gnuplot script specified
with -a option.

breakdown nfsv3.plt and breakdown nfsv4.plt are a Gnuplot scripts that understand output data
format of Operation Breakdown analyzer and generate .png files with plots. Note that Gnuplot must be
installed.

Extract dump.pcap from dump.pcap.bz2 to stdin.

Read stdin and analyze data with libbreakdown.so module.

bzcat trace.pcap.bz2 | nfstrace -m stat -I - -a libbreakdown.so

Generate plot according to *.dat files generated by

libbreakdown.so analyzer.

nst.sh -a breakdown.plt -d . -p ’breakdown*.dat’ -v

3 ANALYZERS

All pluggable modules are implemented as external shared libraries.

3.1 OPERATION BREAKDOWN ANALYZER (LIBBREAKDOWN.SO)

Operation Breakdown (OB) analyzer calculates average frequency of NFS/CIFS procedures and computes
standard deviation of latency.

$ nfstrace -a libbreakdown.so h

nfstrace 0.4.0 (Release) built on Linux-3.16.1-1-generic by C++ compiler GNU 4.9.1

Usage: ./nfstrace [OPTIONS]...

And the result of execution will look something like this:

LLog file: nfstrace.log

Loading module: ’libbreakdown.so’ with args: []

Read packets from: datalink: EN10MB (Ethernet) version: 2.4

Note: It’s potentially unsafe to run this program as root without dropping root privileges.

Note: Use -Z username option for dropping root privileges when you run this program as user with root privileges.

Processing packets. Press CTRL-C to quit and view results.

Detect session 127.0.0.1:34744 --> 127.0.1.1:2049 [TCP]

Detect session 127.0.0.1:929 --> 127.0.1.1:2049 [TCP]

Detect session 127.0.0.1:774 --> 127.0.1.1:2049 [TCP]

Detect session 127.0.0.1:854 --> 127.0.1.1:2049 [TCP]

Detect session 10.0.2.15:55529 --> 10.6.208.121:445 [TCP]

Detect session 10.0.2.15:55530 --> 10.6.208.121:445 [TCP]

Breakdown analyzer

CIFS v1 protocol Total operations: 101. Per operation:

CREATE DIRECTORY 0 0.00%

DELETE DIRECTORY 0 0.00%

Nfstrace User and Developer Manual 7 November 26, 2015

3.1 OPERATION BREAKDOWN ANALYZER (LIBBREAKDOWN.SO) 3 ANALYZERS

OPEN 0 0.00%

CREATE 0 0.00% ...complete output has been omitted...

Per connection info:

Session: 10.0.2.15:55529 --> 10.6.208.121:445 [TCP] Total operations: 101. Per operation:

CREATE DIRECTORY Count: 0 (0.00%) Min: 0.000 Max: 0.000 Avg: 0.000 StDev:

0.00000000

DELETE DIRECTORY Count: 0 (0.00%) Min: 0.000 Max: 0.000 Avg: 0.000 StDev:

0.00000000

OPEN Count: 0 (0.00%) Min: 0.000 Max: 0.000 Avg: 0.000 StDev:

0.00000000

CREATE Count: 0 (0.00%) Min: 0.000 Max: 0.000 Avg: 0.000 StDev:

0.00000000

CLOSE Count: 2 (1.98%) Min: 0.001 Max: 0.002 Avg: 0.001 StDev:

0.00057205

...complete output has been omitted...

Breakdown analyzer

CIFS v2 protocol Total operations: 77. Per operation:

NEGOTIATE 1 1.30%

SESSION SETUP 2 2.60%

LOGOFF 0 0.00%

TREE CONNECT 2 2.60%

...complete output has been omitted...

Breakdown analyzer

NFS v3 protocol Total operations: 7123. Per operation:

NULL 2 0.03%

GETATTR 47 0.66%

SETATTR 5 0.07%

LOOKUP 4 0.06%

...complete output has been omitted...

Breakdown analyzer

NFS v4.0 protocol

Total procedures: 3264. Per procedure:

NULL 2 0.06%

COMPOUND 3262 99.94%

Total operations: 9701. Per operation:

ILLEGAL 0 0.00%

ACCESS 16 0.16%

CLOSE 5 0.05%

...complete output has been omitted...

Breakdown analyzer

NFS v4.1 protocol

Total procedures: 8127. Per procedure:

NULL 0 0.00%

COMPOUND 8127 100.00%

Total operations: 32359. Per operation:

ILLEGAL 0 0.00%

ACCESS 15 0.05%

CLOSE 5 0.02%

COMMIT 81 0.25%

...complete output has been omitted...

OB analyzer produces .dat file in the current directory for each detected NFS/CIFS session:

$ ls -a *.dat breakdown 10.6.137.79:949 --> 10.6.7.38:2049 [TCP].dat

As described in 2.5.7, produced .dat files can be visualized using nst.sh and breakdown nfsv3.plt or
breakdown nfsv4.plt (according to NFS version).

nst.sh -a breakdown nfsv3.plt -d . -f ’breakdown 10.6.137.79:949 -->

10.6.7.38:2049 [TCP].dat’

Nfstrace User and Developer Manual 8 November 26, 2015

3.1 OPERATION BREAKDOWN ANALYZER (LIBBREAKDOWN.SO) 3 ANALYZERS

Figure 1: Session visualization

Nfstrace User and Developer Manual 9 November 26, 2015

3.2 WATCH (LIBWATCH.SO) 3 ANALYZERS

3.2 WATCH (LIBWATCH.SO)

Watch plugin mimics old nfswatch utility: it monitors NFS and CIFS traffic and displays it in terminal using
ncurses. It supports NFSv3, NFSv4, NFSv4.1, CIFSv1 and CIFSv2.

---|

|Nfstrace watch plugin. To scroll press up or down keys. Ctrl + c to exit. |

|Host name: epbyminw0059.minsk.epam.com |

|Date: 3.4.2015 Time: 16:57:58 |

|Elapsed time: 0 days; 0:1:50 times |

| NFS v3 NFS v4 NFS v41 CIFS v1 < CIFS v2 > |

| |

|Total: 182 |

|NEGOTIATE 3 1.65% |

|SESSION SETUP 8 4.40% |

|LOGOFF 1 0.55% |

|TREE CONNECT 4 2.20% |

|TREE DISCONNECT 2 1.10% |

|CREATE 33 18.13% |

|CLOSE 32 17.58% |

|FLUSH 0 0.00% |

|READ 2 1.10% |

|WRITE 1 0.55% |

|LOCK 0 0.00% |

|IOCTL 0 0.00% |

|CANCEL 0 0.00% |

|ECHO 50 27.47% |

|QUERY DIRECTORY 34 18.68% |

|CHANGE NOTIFY 0 0.00% |

|QUERY INFO 9 4.95% |

|SET INFO 3 1.65% |

|OPLOCK BREAK 0 0.00% |

L---

By default watch plugin will update its screen every second, you can specify another timeout in millisec-
onds:

$ nfstrace -a libwatch.so#2000

3.3 JSON ANALYZER (LIBJSON.SO)

JSON analyzer calculates a total amount of each supported application protocol operation. It accepts TCP-
connections on particular TCP-endpoint (host:port), sends a respective JSON to the TCP-client and closes
connection. Suggested to be used in live mode.

Available options:
host=HOSTNAME Network interface to listen (default: listen all interfaces)
port=PORT IP-port to bind to (default: 8888)
workers=WORKERS Amount of worker threads (default: 10)
duration=DURATION Max serving duration in milliseconds (default: 500)
backlog=BACKLOG Listen backlog (default: 15)

In order to try this analyzer out you can start nfstrace in on terminal:

$ nfstrace -i eth0 -a libjson.so#host=localhost

And then you can make a TCP-request to nfstrace in another terminal to fetch current statistics:
$ telnet localhost 8888 Trying 127.0.0.1...

Connected to localhost.

Escape character is ^{}].
{
"nfs v3":{ "null":32,

"getattr":4582, ...

},
"nfs v4":{ ... }, ...

}Connection closed by foreign host.

Nfstrace User and Developer Manual 10 November 26, 2015

4 IMPLEMENTATION DETAILS

4 IMPLEMENTATION DETAILS

This section may be interested for the developers who want to contribute or implement new pluggable analysis
module.

4.1 PAYLOAD FILTRATION

Each NFSv3 procedure consists of two RPC messages:

• call request from client to server;

• reply reply from server with result of requested procedure.

Both RPC messages may contain data useful for analysis. Both RPC messages may contain thousands
of Payload bytes useless for analysis. nfstrace captures headers of calls and replies and then matches pairs of
them to complete NFS procedures.

The --snaplen option sets up the amount of bytes of incoming packet for uprising from the kernel to
user-space. In case of TCP transport layer this option is useless because TCP connection is a bidirectional
stream of data (instead of UDP that is form of interchange up to 64k datagrams). In case of NFS over TCP
nfstrace captures whole packets and copies them to user-space from the kernel for DPI and performing NFS
statistical analysis.

Finally, nfstrace filtrates whole NFS traffic passed from the kernel to user-space and detects RPC/NFS
message headers (up to 4 Kbytes) within gigabytes of network traffic.

Detected headers are copied into internal buffers (or dumped into a .pcap file) for statistical analysis.
The key principle of the filtration here is discard Payload ASAP.
Filtration module works in a separate thread and captures packets from network interface using libpcap.

It matches packets to a related session (TCP or UDP) and performs reassembling of TCP flow from a TCP
segment of a packet. After that the part of a packet will be passed to RPCFiltrator. In case of NFSv4 the
whole packet will be passed to RPCFiltrator because it consists of several NFSv4 operations.

There are two RPCFiltrator in one TCP session. Both of them know the state of the current RPC
message in related TCP flow. They can detect RPC messages and perform actions on a packet: discard it or
collect for analysis.

The size of the kernel capture buffer can be set with -b option (in MBytes). Note that this option is
very crucial for capturing performance.

wsize and rsize of an NFS connection are important for filtration and performance analysis too.

4.2 PLUGGABLE ANALYSIS MODULES

nfstrace provides C++ api for implementing pluggable analysis modules. Header files provide definitions of
IAnalyzer interface, NFS/CIFS data structures and functions. The IAnalyzer interface is a set of NFS/CIFS
handlers that will be called by Analysis module for each NFS/CIFS procedure. All constants and definitions
of types will be included with <nfstrace/api/plugin api.h> header.

A pluggable analysis module must be a dynamically linked shared object and must export the following
C functions:

const char* usage (); // return description of expected opts for create(opts)

IAnalyzer* create (const char* opts); // create and return an instance of an Analyzer

void destroy (IAnalyzer* instance); // destroy created instance of an Analyzer

const AnalyzerRequirements* requirements(); // return Analyzer’s requirements

After the declaration of all these function there must be the following macro:

NST PLUGIN ENTRY POINTS (&usage, &create, &destroy, &requirements)

usage() function must return a C-string with module description and required parameters for creation of
an instance of analyzer, this string will be shown in the output of --help option.

IAnalyzer* create(const char* opts) must create and return an instance of the analyzer according to passed
options.

Nfstrace User and Developer Manual 11 November 26, 2015

4.3 GENERAL SCHEMA 4 IMPLEMENTATION DETAILS

void destroy(IAnalyzer* instance) must destroy previously created analyzer instance and perform required
cleanups (e.g. close connection to a database etc.).

const AnalyzerRequirements* requirements() must create and return an instance of analyzer requirements.
Its silence property is used if exclusive control over standard output is required.

All existing analyzers are implemented as pluggable analysis modules and can be attached to nfstrace
with -a option.

4.3 GENERAL SCHEMA

The general schema of nfstrace is presented in the Figure 2. In this schema you can see how data flows in
different modes:

• on-line analysis green line

• on-line dumping yellow line

• off-line dumping blue line

• off-line analysis orange line

Nfstrace User and Developer Manual 12 November 26, 2015

4.3 GENERAL SCHEMA 4 IMPLEMENTATION DETAILS

Figure 2: General schema

Nfstrace User and Developer Manual 13 November 26, 2015

