@ O NORM Developer's Guide
(version 1.5b5)

Abstract

This document describes an application programming interface (API) for the Nack-Oriented Reliable Multicast
(NORM) protocol implementation developed by the Protocol Engineering and Advance Networking (PROTEAN)
Research Group of the United States Naval Research Laboratory (NRL). The NORM protocol provides general
purpose reliable data transport for applications wishing to use Internet Protocol (IP) Multicast services for group
data delivery. NORM can also support unicast (point-to-point) data communication and may be used for such
when deemed appropriate. The current NORM protocol specification is given in the Internet Engineering Task
Force (IETF) RFC 3940. This document is currently a reference guide to the NORM API of the NRL reference
implementation. More tutorial material may be include in a future version of this document or a separate developer's
tutorial may be created at a later date.

Table of Contents

1 BACKGIOUNG ... e et 3
B2 O T T 4
pZ2 e o T 13- L2 14T o 5

2.2. 5ession Creation and CONTIOLuu i 5

2.3, Data TIaNSPOIT ...ttt et et et et 5

P TR - - I] 1 151 T 5

2.3.2. Data RECEPLION ...ueiiiti et et 7

P N e B YT o1 [) 7= U1 o 7

R TR = 11T Lo T T] =T 7
B TR0 U T = - 0 02 8

3.2. WIN32/WINCE PIatfOrms ... ue it r e e e e e e e 8
A B (=1 (=T (T ot 8
4.1. APl Variable Types and CONSLANTScevvunieiiiiie ettt 8
4.1.1. NormInstanCeHANIEiii i e 9

4.1.2. NOrmSesSIONHANAIEceeiii e e e e e e e 9

e N o 0 RS 1= o] o [9

4.1.4. NOrMNOGEHANAIEoee e e e e e e e e e e eeens 9

S T N [0 1 0 01NN oo T o 9

4.1.6. NOrmODjJECtHANIEout i e 9

A.1.7. NOIMODJECETTYPE ..ttt ettt e e et e e e bt e e e et e eeenes 9

RS R N o 3415 . 10

4.1.9. NormODBJECtTranSPOITIdcovviiiiiii e 10

4.1.10. NOIMEVENTTYPE oottt et et 10

4110 NOIMEVENT Lo e 10

4.1.02. NOTMDESCIIPION ...ttt ettt e e 10

e R N o g 1 1T 41/ o T 10

4.1.14. NOrMPIODINGIMOUTE ...t e et 11

4.1.15. NOMMSYNCPOIICY ...ceiviiieeiii e e e e et e e e eees 11

4.1.16. NOrmNaCKINGMOUEoiiiiiiiii e 11

4.1.17. NOrMREPAINBOUNUANYceiiuiieeiii et 11

4.1.18. NOIMACKINGSTAIUS ...eeveiieiiii et e 12

4.2. AP Initialization and OPEratioNccoouuriiiiiiiie e e e e e e 12

http://norm.pf.itd.nrl.navy.mil/
http://norm.pf.itd.nrl.navy.mil/
http://cs.itd.nrl.navy.mil/
http://www.nrl.navy.mil/
http://www.ietf.org/
http://www.ietf.org/
http://norm.pf.itd.nrl.navy.mil/rfc3940.pdf

NORM Developer's Guide

4.2.1. NOrmMCreateINSTANCE() «.vu.eveririiieei et e e e et e e e e e e e e e et e et e e e e aaeeaanees 12
4.2.2. NOrmDESIrOYINSTANCE() +.uuevvreiiieii e e e e e e e e e e e aae s 12
o T N [o] 1 1 (o] o] [5y 7T (o= TP 13
4.2.4,. NOrmREStArtINSTANCE() «.vvuvvrneiiieiii e e e e e e aaas 13
4.2.5. NOrmSetCacheDIreCtOrY()uueivniiiiiieiiii et e e e e e aaes 13
4.2.6. NOrMGEINEXIEVENT() 1.vvniiiiiiiii i e e e e e e 14
4.2.7. NOrMGEDESCIIPION() «evvuerreeiii et e et e e e et e e e e e e e e et e e e e e et e e e et e e aaeees 16
4.3. Session Creation and Control FUNCLIONSuuuiiiiiiiieiii e 17
4.3.1. NOIMCIEAtESESSION() 1.vvuerrreiii ettt e ettt e e e e e e e e e e e e e e et e e et e e et e e aataeaaaaees 17
4.3.2. NOrMDESIIOYSESSION() +.vuervvtieriieeii e et et e e e e e e e e e e e e e s e e e e e e s e e ean s 18
4.3.3. NOrMSEIUSEIDALA() +..evvuivtneiiieeii et e e e e et e e e e e e e e e et e e e e aat e e aaeeaaaees 18
4.3.4. NOrMGELUSEIDALA() +.uuevvrerii et eeiieee et e e et aaees 18
4.3.5. NOormGetLOCAINOAEIA() ..vuvvvneeii et e e 19
4.3.6. NOIMSEITXPOI() ©.evvvneiiieiii et e e e e e e e e e e et e e et eaaeas 19
4.3.7. NOIMSEITXONIY() ovvniiiiii e e e r e e 20
4.3.8. NOrMSEIRXPOMREUSE() +..vvvuiriiiiiieeei e e e e e e e e e et e e e e e ees 20
4.3.9. NormSetMUlticastINterface()cvvviiiiieiii e 22
4.3.20. NOTMSEISSIM() +vvvvvriieeee ittt ettt et e e e e e e e et e a e e e e e e e e e e e e 22
e 0 T N T T =1 i I PSSP 22
4.3.12. NOIMSEITOS() oeevvvvruinieeeeeteetie st e e e e e et e e e e et e e et e e e e e e e e e st e e e e eeaaasaaenn s 22
4.3.13. NOrmSetLoophack() .. c.uvuiiieieiiii e 23
4.3.14. NormSetFragmentation()couuiviuiieiii e e e e 23
4.4, NORM Sender FUNCHIONSo.uuiiiiii ettt e et e e et e e et e e e e aaeaeeeenes 24
I T g4 IS T 67T o (=T () 24
o N\ o] 14 15 (o] oIS T=T o LT P 25
O B N (o] 0 T W D R L] (P 26
o (o] 4T DR LT TP 26
4.4.5. NormSetTXSOCKEtBUTTEN() ...vuiiii e 26
4.4.6. NOrmSEtFIOWCONEION() ..ovvuiiieiii e e a e 27
4.4.7. NormSetCongestioNCOoNtrol()cvvviiii i 27
4.4.8. NOrmSetTXRAEBOUNAS()vvvueiiieiiiieii e e e e e e e e e e eee 28
4.4.9. NormSetTXCACheBOUNAS() «.vvuevvrneriieiiieeiii et e e e e e e e e e e e e e e e aaens 29
4.4.10. NOrMSELAULOPAITEY() «ovvuerrneeiiieiii et e e e e e e e e e e e e e e et e e eaaeas 29
4.4.11. NOrMGEtGITtESHMALE() ...vvvviiiiciii e e e e e e aaens 30
4.4.12. NormSetGrttESTIMAE() ..vvvuirrr i e e e e e e 30
4.4.13. NOIMSELGITEMAX() +vunevvririieiie et e e e e e e e e e e e e e e e e et e e e e eeees 31
4.4.14. NormSetGrttProbingMOdE()cvveeii e 31
4.4.15. NormSetGritProbingInterval()oeiiiiiiii e 32
4.4.16. NormSetBackoffFaCtor()vivrieiiiii e 32
4.4.17. NOrMSEIGIOUPSIZE() «.evvvneeineeiii e et e et e e e e e e e e e e e aaaaeees 33
4.4.18. NOrmSetTXRODUSEFACION() ..vuevvreriieiii e e e e e e e e e e aaens 33
4.4.19. NOTMFIEENQUEUE() «..vvvniiie e e e e e e e e aaeas 34
4.4.20. NOrMDAtAENGUEUE() ovvunerrreeii et et et e e e e e e e e e e et e e a e e e e aaeas 35
4.4.21. NOrmReqUEUEODJECI() .vvuiiin it 35
4.4.22. NOrMSErEAMOPEN() +uuevrrtierin et e et et et e e e e e e e e e e e e e et e e et e e e eaaes 36
4.4.23. NOrMSLEAMCIOSE() .evvuiiriiii ettt e e e e e e e e aan s 37
4.4.24, NOrMSEEAMWVIITE() .evvueriiieii e et e e e e e e e e e e e e e e e e aan s 37
4.4.25. NormStreamFIUSN() ...covniii i 38
4.4.26. NormStreamSetAUtOFIUSN()ovviiii i 39
4.4.27. NormStreamSetPUShENADIE()vviiiiiii e 39
4.4.28. NOrmStreamHAaSVACANCY () +...vvvunerrneiiiieeiii e e e et e e e e e e e e e e e e e r e eaaens 40
4.4.29. NormStreamMarkEOM()covueiiiieii e 40
4.4.30. NOrmSetWatermark()uiiiunieiiiei e e e 40
4.4.31. NormCancelWatermark()oevueieiii e 42
4.4.32. NOrMAdAACKINGNOGE() «.ovvvniiiieiii i r e e aens 42
4.4.33. NormRemOoVeACKINGNOGE() ..vuuiiiriiii i 42
4.4.34. NormGetNexXtACKINGNOGE()vvvneiiiiiiii e e e e e 43
4.4.35. NOrMGELACKINGSTATUS() «.evvvveriieiiiieeii e e e e e e e e e e e e e e e aaens 43

NORM Developer's Guide

4.4.36. NormSendCommand()cuuueiriieiiiieiie e e e e e e e e e a e 44
4.4.37. NormCancelCommand() .. . cvuuerrneriiie i ee et e e e e e er e e r e 45
4.5. NORM RECEIVEN FUNCLIONS ...\ttt e e e e e e e b 45
4.5.1. NOIMSTATRECEIVEI() 1ovvuiiieiii et e et e e e e e e e e e e e e e et e e e et e e aaaeres 45
T N[04 1Sy 0] o] =T ot T AV (RN 46
4.5.3. NOrmSetRXCaCheLimit()ovvuiiiiiiii i e e 46
4.5.4. NormSetRXSOCKEIBUFFEI() ... cvvviiiii e e 47
4.5.5. NOrmSetSIlENtRECRIVEI() ...vvuiiiiieii e e e 47
4.5.6. NormSetDefaultUnicastNACK()cvuuiiiunieiiieiii e e e e e 48
4.5.7. NormNodeSetUnICaStNACK()uuevvriiiiieiiiie i e e e e e e aan s 48
4.5.8. NormSetDefaultSYNCPOLICY() .. cvvviriiieiii e e 49
4.5.9. NormSetDefaultNackingMOde()cvvviiinieiiei e 49
4.5.10. NormNodeSetNackingMOTe()covviiiiieiii e e 50
4.5.11. NormObjectSetNacKingMOAE() .. u.cvvriiii i e 50
4.5.12. NormSetDefaultRepairBoundary()c..vevuieiiieiiii e e e e e 51
4.5.13. NormNodeSetRepairBoOUNAAIY()uuevvueiiiieiiieeie et e e e e e e e e e e e e 51
4.5.14. NormSetDefaultRXROBUSIFACION()cvvvivieii e e 51
4.5.15. NormNodeSetRXRODUSIFACION() ...u.cvvviiieieiie e e e e 52
4.5.16. NOrMSLreamMREAA() ...vuuivvreiii e it e et e e e e e e e e e e e e e e e et e e a e aa 52
4.5.17. NormStreamSeeKIMSGSTAIT()ovvveriiieiiiieeii e e e e e e 53
4.5.18. NormStreamGetReadOFTSEL()vvuevrriiiii e e 53
4.6. NORM ODBJECt FUNCLIONSiiiiiiiiiicii e e e e e e e e e e e e e e e e e eaes 53
T N To 109 1@ o] [=Tot (=] Y7o 1=) P 54
4.6.2. NormODBjJectHASINTO() ..vvniveiiiiii e 54
4.6.3. NormObjectGetINfOLENGtN()uuevvr i 54
4.6.4. NOormODBJECtGELINTO() ...cvvviiiiii e e 55
4.6.5. NOrMODJECIGELSIZE() ..ovvviviiieii e e e a e e aeas 55
4.6.6. NormObjectGetBYteSPENTING() ..vvvvvreiiiieiii e e a e 55
4.6.7. NOrmODBJECICANCEI() ..vuiivr i e 56
4.6.8. NOrmMODBJECIRELAIN() .. .evvviiiiieiii e e e r e e aa s 56
e I N o] 100 1@ o] [=Tot 2 (=T =T PPN 57
4.6.10. NOrMFIIEGEINAME() .evuniritiiiii e it e e e e e e e e e e e e eaa s 57
4.6.11. NOrMFIERENAME() ..vvvieiiiieiii e e e e e e e e e e e e aa s 57
4.6.12. NOrmDataACCESSDALA() ...vvuivvreiitieiii e i e e 58
4.6.13. NormDataDetaChData()ccvuerrneriiieiiiiee e e e s e e e e e e e e e aan s 58
4.6.14. NOrmODJECIGESENUEI() ...vvuiieieiii e e e e e e e 59
4.7. NORM NOUE FUNCLIONS ... iiiiiiieeiiii ettt e e e e et n e e et n e e e et aeeeeneneeeenes 59
4.7.1. NOrMNOAEGEIIA() 1.vuiiieei e e e e e e e e e e 59
4.7.2. NOrMNOGEGELAAAIESS() .. vvvuerrieiii et e e et e e e e e e e e e et e et e e et eaanaeae 60
o T N o 031\ (=TT (] o«) 60
4.7.4. NormNodeGetCommaNd()vvueirrneeii it ee e e e e e e e e e e e e e ea e e e 60
4.7.5. NOrmNOAEFIeEBUTTEIS() ..vuivr i e e 61
4.7.6. NOrMNOGEDEIETE() .. evvveeiiieii e e e e e e e ees 61
4.7.7. NOrMNOGERETAIN() +..evvveiiiiei e e e e e e e et e e e eeaaaeees 62
4.7.8. NOIMNOUEREIBASE() +..evvvirrieiiiie i e et et e e e e e e e e e aaaas 62
4.8. NORM Debugging FUNCLIONSciuiiiiieiii e e e e e a e e aaeas 63
4.8.1. NOrmSetDEBUGLEVEI() .vvuiiiieii e e e e 63
4.8.2. NOrmOPENDEDUGLOG() «vvvnevrrreiii ittt e e e e e e aaas 63
4.8.3. NOrmCIoSEDEDUGLOG() ++uevvreriieiiiie et et e e e e e e e e 63
4.8.4. NOrmOpPenDEBUGPIPE() «..vvueiriieiii et e e 63
4.8.5. NOrMCIOSEDEDUGPIPE() +vvuvrineii ittt e e e e 64

1. Background

This document describes an application programming interface (API) for the Nack-Oriented Reliable Multicast
(NORM) protocol implementation developed by the Protocol Engineering and Advance Networking (PROTEAN)
Research Group of the United States Naval Research Laboratory (NRL). The NORM protocol provides general

http://norm.pf.itd.nrl.navy.mil/
http://norm.pf.itd.nrl.navy.mil/
http://cs.itd.nrl.navy.mil/
http://www.nrl.navy.mil/

NORM Developer's Guide

purpose reliable data transport for applications wishing to use Internet Protocol (IP) Multicast services for group
data delivery. NORM can also support unicast (point-to-point) data communication and may be used for such
when deemed appropriate. The current NORM protocol specification is given in the Internet Engineering Task
Force (IETF) RFC 5740.

The NORM protocol is designed to provide end-to-end reliable transport of bulk data objects or streams over
generic IP multicast routing and forwarding services. NORM uses a selective, negative acknowledgement (NACK)
mechanism for transport reliability and offers additional protocol mechanisms to conduct reliable multicast sessions
with limited "a priori" coordination among senders and receivers. A congestion control scheme is specified to allow
the NORM protocol to fairly share available network bandwidth with other transport protocols such as Transmission
Control Protocol (TCP). It is capable of operating with both reciprocal multicast routing among senders and receivers
and with asymmetric connectivity (possibly a unicast return path) from the senders to receivers. The protocol offers
a number of features to allow different types of applications or possibly other higher-level transport protocols to
utilize its service in different ways. The protocol leverages the use of FEC-based repair and other proven reliable
multicast transport techniques in its design.

The NRL NORM library attempts to provide a general useful capability for development of reliable multicast ap-
plications for bulk file or other data delivery as well as support of stream-based transport with possible real-time
delivery requirements. The API allows access to many NORM protocol parameters and control functions to tailor
performance for specific applications. While default parameters, where provided, can be useful to a potential wide
range of requirements, the many different possible group communication paradigms dictate different needs for
different applications. Even with NORM, the developer should have a thorough understanding of the specific ap-
plication's group communication needs.

2. Overview

The NORM API has been designed to provide simple, straightforward access to and control of NORM protocol
state and functions. Functions are provided to create and initialize instances of the NORM API and associated
transport sessions (NormSessions). Subsequently, NORM data transmission (NormSender) operation can be activated
and the application can queue various types of data (NormObjects) for reliable transport. Additionally or alternatively,
NORM reception (NormReceiver) operation can also be enabled on a per-session basis and the protocol implement-
ation alerts the application of receive events.

By default, the NORM API will create an operating system thread in which the NORM protocol engine runs. This
allows user application code and the underlying NORM code to execute somewhat independently of one another.
The NORM protocol thread notifies the application of various protocol events through a thread-safe event dispatching
mechanism and API calls are provided to allow the application to control NORM operation. (Note: API mechanisms
for lower-level, non-threaded control and execution of the NORM protocol engine code may also be provided in
the future.)

The NORM API operation can be roughly summarized with the following categories of functions:
1. API Initialization

2. Session Creation and Control

3. Data Transport

4. API Event Notification

Note the order of these categories roughly reflects the order of function calls required to use NORM in an applic-
ation. The first step is to create and initialize, as needed, at least one instance of the NORM API. Then one or more
NORM transport sessions (where a "session" corresponds to data exchanges on a given multicast group (or unicast
address) and host port number) may be created and controlled. Applications may participate as senders and/or re-
ceivers within a NORM session. NORM senders transmit data to the session destination address (usually an IP
multicast group) while receivers are notified of incoming data. The NORM API provides and event notification
scheme to notify the application of significant sender and receiver events. There are also a number support functions
provided for the application to control and monitor its participation within a NORM transport session.

http://www.ietf.org/
http://www.ietf.org/
http://norm.pf.itd.nrl.navy.mil/rfc5740.pdf

NORM Developer's Guide

2.1. API Initialization

The NORM API requires that an application explicitly create at least one instance of the NORM protocol engine
that is subsequently used as a conduit for further NORM API calls. By default, the NORM protocol engine runs
in its own operating system thread and interacts with the application in a thread-safe manner through the API calls
and event dispatching mechanism.

In general, only a single thread should access the Nor nGet Next Event () API call for a given Normlnstance. This
function serves as the conduit for delivering NORM protocol engine events to the application. A NORM application
can be designed to be single-threaded, even with multiple active NormSessions, but also multiple API instances
can be created (see Nor nCr eat el nst ance()) as needed for applications with specific requirements for accessing
and controlling participation in multiple NormSessions from separate operating system multiple threads. Or, altern-
atively, a single Normlnstance could be used, with a "master thread" serving as an intermediary between the
Nor mGet Next Event () function, demultiplexing and dispatching events as appropriate to other "child threads" that
are created to handle "per-NormSession™ input/output. The advantage of this alternative approach is that the end
result would be one NORM protocol engine thread plus one "master thread" plus one "child thread" per NormSession
instead of two threads (protocol engine plus application thread) per NormSession if such multi-threaded operation
is needed by the application.

2.2. Session Creation and Control

Once an API instance has been successfully created, the application may then create NORM transport session in-
stances as needed. The application can participate in each session as a sender and/or receiver of data. If an applic-
ation is participating as a sender, it may enqueue data transport objects for transmission. The control of transmission
is largely left to the senders and API calls are provided to control transmission rate, FEC parameters, etc. Applic-
ations participating as receivers will be notified via the NORM API's event dispatching mechanism of pending
and completed reliable reception of data along with other significant events. Additionally, API controls for some
optional NORM protocol mechanisms, such as positive acknowledgment collection, are also provided.

Note when multiple senders are involved, receivers allocate system resources (buffer space) for each active sender.
With a very large number of concurrently active senders, this may translate to significant memory allocation on
receiver nodes. Currently, the API allows the application to control how much buffer space is allocated for each
active sender (NOTE: In the future, API functions may be provided limit the number of active senders monitored
and/or provide the application with finer control over receive buffer allocation, perhaps on a per sender basis).

2.3. Data Transport

The NORM protocol supports transport of three basic types of data content. These include the types NORM OB-
JECT_FI LE and NORM_OBJECT_DATA which represent predetermined, fixed-size application data content. The only
differentiation with respect to these two types is the implicit "hint" to the receiver to use non-volatile (i.e. file
system) storage or memory. This "hint" lets the receiver allocate appropriate storage space with no other information
on the incoming data. The NORM implementation reads/writes data for the NORM OBJECT_FI LE type directly
from/to file storage, while application memory space is accessed for the NORM_OBJECT_DATA type. The third data
content type, NORM_OBJECT_STREAM represents unbounded, possibly persistent, streams of data content. Using
this transport paradigm, traditional, byte-oriented streaming transport service (e.g. similar to that provided by a
TCP socket) can be provided. Additionally, NORM has provisions for application-defined message-oriented
transport where receivers can recover message boundaries without any "handshake" with the sender. Stream content
is buffered by the NORM implementation for transmission/retransmission and as it is received.

2.3.1. Data Transmission

The behavior of data transport operation is largely placed in the control of the NORM sender(s). NORM senders
controls their data transmission rate, forward error correction (FEC) encoding settings, and parameters controlling
feedback from the receiver group. Multiple senders may operate in a session, each with independent transmission
parameters. NORM receivers learn needed parameter values from fields in NORM message headers.

NORM transport "objects" (file, data, or stream) are queued for transmission by NORM senders. NORM senders
may also cancel transmission of objects at any time. The NORM sender controls the transmission rate either

NORM Developer's Guide

manually (fixed transmission rate) or automatically when NORM congestion control operation is enabled. The
NORM congestion control mechanism is designed to be "friendly" to other data flows on the network, fairly
sharing available bandwidth.Nor nSet Aut oPar i t y()) to achieve reliable transfer) receive object transmission before
any extensive repair process that may be required to satisfy other receivers with poor network connectivity. The
repair boundary can also be set for individual remote senders using the Nor mNodeSet Repai r Boundar y() func-
tion.NORM_OBJECT_FI LE objects. This function must be called before any file objects may be received and thus
should be called before any calls to Nor nst ar t Recei ver () are made. However, note that the cache directory may
be changed even during active NORM reception. In this case, the new specified directory path will be used for
subsequently-received files. Any files received before a directory path change will remain in the previous cache
location. Note that the Nor nFi | eRenane() function may be used to rename, and thus potentially move, received
files after reception has begun.

By default, the NORM sender transmits application-enqueued data content, providing repair transmissions (usually
in the form of FEC messages) only when requested by NACKSs from the receivers. However, the application may
also configure NORM to proactively send some amount of FEC content along with the original data content to
create a "robust" transmission that, in some cases, may be reliably received without any NACKing activity. This
can allow for some degree of reliable protocol operation even without receiver feedback available. NORM senders
may also requeue (within the limits of "transmit cache" settings) objects for repeat transmission, and receivers
may combine together multiple transmissions to reliably receive content. Additionally, hybrid proactive/reactive
FEC repair operation is possible with the receiver NACK process as a "backup" for when network packet loss
exceeds the repair capability of the proactive FEC settings.

The NRL NORM implementation also supports optional collection of positive acknowledgment from a subset of
the receiver group at application-determined positions during data transmission. The NORM API allows the ap-
plication to specify the receiver subset (""acking node list") and set "watermark™ points for which positive acknow-
ledgement is collected. This process can provide the application with explicit flow control for an application-de-
termined critical set of receivers in the group.

For a NORM application to perform data transmission, it must first create a session using Nor nCr eat eSessi on()
and make a call to Nor nSt art Sender () before sending actual user data. The functions Nor nFi | eEnqueue(),
Nor nDat aEnqueue(), and Nor nSt r eamW i t e() are available for the application to pass data to the NORM protocol
engine for transmission. Note that to use Nor nStreamWite(), a "sender stream™ must first be created using
Nor st r eanOpen() . In the case of Nor nFi | eEnqueue() and Nor nDat aEnqueue() , the NORM protocol engine
directly accesses the application file or memory space to refer to the transmitted content and does not make its
own copy of this data.

The calls to enqueue transport objects or write to a stream may be called at any time, but the NORM_TX_QUEUE_EMPTY
and NORM_TX_QUEUE_VACANCY notification events (see Nor nGet Next Event ()) provide useful cues for when these
functions may be successfully called. Typically, an application might catch both NORM TX_QUEUE_EMPTY and
NORM_TX_QUEUE_VACANCY event types as cues for enqueuing additional transport objects or writing to a stream.
However, an application may choose to cue off of NORM_TX_QUEUE_EMPTY only if it wishes to provide the "freshest"
data to NORM for transmission. The advantage of additionally using NORM TX_QUEUE_VACANCY is that if the ap-
plication uses this cue to fill up NORM transport object or stream buffers, it can keep the NORM stream busy
sending data and realize the highest possible transmission rate when attempting very high speed communication
(Otherwise, the NORM protocol engine may experience some "dead air time" waiting for the application thread
to respond to a NORM_TX_QUEUE_EMPTY event). Note the sender application can control buffer depths as needed
with the Nor mSet TxCacheBounds() and Nor nt reanOpen() calls. Additionally, it is possible for applications to
configure the transmit object “cache" (see Nor mSet TxCacheBounds()) and use the Nor nRequeuebj ect () call
(for objects that have not yet received a NORM_TX_OBJECT_PURGED notification) to effect a sort of "data carousel"
operation with repeated transmission of the cached objects. The NORM TX_OBJECT_SENT notification can be used
a cue to properly control the "requeue” cycle(s).

The NORM implementation provides a form of timer-based flow control that limits how quickly sender applications
may enqueue new objects or stream data for transmission. The Nor nSet FI owCont r ol () call is provided to control
this behavior, including the option to disable it. This timer-based mechanism is a type of "soft" flow control by
allowing receivers "sufficient” time to request repair of pending data the sender has enqueued. A more explicit
form of flow control using the optional "watermark flushing" mechanism is described below.

NORM Developer's Guide

Another cue that can be leveraged by the sender application to determine when it is appropriate to enqueue (or
write) additional data for transmission is the NORM_TX_WATERMARK_COVPLETED event. This event is posted when
the flushing or explicit positive acknowledgment collection process has completed for a "watermark™ point in
transmission that was set by the sender (see Nor nSet Wat er mar k() and Nor mAddAcki ngNode()). A list of Nor mNodel d
values can be supplied from which explicit acknowledgement is expected and/or the Nor mNodel d NORM_NODE_NONE
can be set (using Nor mAddAcki ngNode()) for completion of a NACK-based version of the watermark flushing
procedure. This flushing process can be used as a flow control mechanism for NORM applications. Note this is
distinct from NORM's congestion control mechanism that, while it provides network-friendly transmission rate
control, does guarantee flow control to receiving nodes.NORM _NODE_NONE can be set (using Nor mAddAcki ngNode())
for completion of a NACK-based version of the watermark flushing procedure. This flushing process can be used
as a flow control mechanism for NORM applications. Note this is distinct from NORM's congestion control
mechanism that, while it provides network-friendly transmission rate control, does guarantee flow control to re-
ceiving nodes.

2.3.2. Data Reception

NORM receiver applications learn of active senders and their corresponding pending and completed data transfers,
etc via the API event dispatching mechanism. By default, NORM receivers use NACK messages to request repair
of transmitted content from the originating sender as needed to achieve reliable transfer. Some API functions are
available to provide some additional control over the NACKing behavior, such as initially NACKing for NORM | NFO
content only or even to the extent of disabling receiver feedback (silent receiver or emission-controlled (EMCON)
operation) entirely. Otherwise, the parameters and operation of reliable data transmission are left to sender applic-
ations and receivers learn of sender parameters in NORM protocol message headers and are instructed by NORM_CVD
messages from the sender(s).

With respect to the NORM API, the receiver application is informed of new senders and receive data objects via
the the NORM_REMOTE_SENDER_NEWand NORM_RX_OBJECT_Newnotifications, respectfully. Additionally, object re-
ception progress is indicated with the NORM_RX_OBJECT_UPDATED notification and this also serves as an indicator
for the NORM_OBJECT_STREAMtype that the receive application should make calls to Nor nst r eanRead() to read
newly received stream content. NORM sender status is also conveyed via the NORM_REMOTE_SENDER _ACTI VE and
NORM_REMOTE_SENDER_INACTIVE notifications. For example, the receiver application may use the
NORM_REMOTE_SENDER | NACTI VE as a cue to make calls to Nor nNodeFr eeBuf f er s() and/or Nor mNodeDel et e()
to free memory resources allocated for buffering received content for the given sender. The amount of memory
allocated per sender is set in the Nor nSt ar t Recei ver () call.

2.4. APl Event Notification

An asynchronous event dispatching mechanism is provided to notify the application of significant NORM protocol
events. The centerpiece of this is the Nor mGet Next Event () function that can be used to retrieve the next NORM
protocol engine event in the form of a Nor mEvent structure. This function will typically block until a Nor nEvent
occurs. However, non-blocking operation may be achieved by using the Nor nGet Descri ptor () call to get a
NormDescriptor (file descriptor) value (Unix int or Win32 HANDLE) suitable for use in a asynchronous 1/0O
monitoring functions such as the Unix sel ect () or Win32 Msg\ai t For Mul t i pl eObj ect s() System calls. The a
NormDescriptor will be signaled when a Nor nEvent is available. For Win32 platforms, dispatching of a user-
defined Windows message for NORM event notification is also planned for a future update to the NORM API.

3. Build Notes

To build applications that use the NORM library, a path to the "normApi.h™ header file must be provided and the
linker step needs to reference the NORM library file ("I i bnor m a™ for Unix platforms and "Nor m I i b" for Win32
platforms). NORM also depends upon the NRL Protean Protocol Prototyping toolkit "Protokit” library (a.k.a
"Protolib™) (static library files "I i bPr ot oki t . a" for Unix and "Pr ot oki t . I i b" for Win32). Shared or dynamically-
linked versions of these libraries may also be built from the NORM source code or provided. Depending upon the
platform, some additional library dependencies may be required to support the needs of NORM and/or Protokit.
These are described below.

The "makefiles" directory contains Unix Makefiles for various platforms the "win32" and "wince" sub-directories
there contain Microsoft Visual C++ (VC++) and Embedded VVC++ project files for building the NORM implement-

NORM Developer's Guide

ation. Additionally, a "waf" (Python-based build tool) build option is supported that can be used to build and install
the NORM library code on the supported platforms. Finally, Python and Java bindings to the NORM API are in-
cluded and "src/python™ and "src/java" directories contain the code for these and the "makefiles/java" directory
contains Makefiles to build the NORM Java JNI bindings. Note the "waf" tool can also be used to build the Java
and Python bindings.

3.1. Unix Platforms

NORM has been built and tested on Linux (various architectures), MacOS (BSD), Solaris, and IRIX (SGI) platforms.
The code should be readily portable to other Unix platforms.

To support IPv6 operation, the NORM and the Protokit library must be compiled with the "HAVE_I Pv6™ macro
defined. This is default in the NORM and Protokit Makefiles for platforms that support IPv6. It is important that
NORM and Protokit be built with this macro defined the same. With NORM, it is recommended that "large file
support™ options be enabled when possible.

The NORM API uses threading so that the NORM protocol engine may run independent of the application. Thus
the "POSIX Threads" library must be included ("-pthread") in the linking step. MacOS/BSD also requires the ad-
dition of the "-Iresolv" (resolver) library and Solaris requires the dynamic loader, network/socket, and resolver
libraries ("-Insl -lsocket -Iresolv*) to achieve successful compilation. The Makefiles in the NORM source code
distribution are a reference for these requirements. Note that MacOS 9 and earlier are not supported.

Additionally, it is critical that the _FI LE_OFFSET_BI TS macro be consistently defined for the NORM library build
and the application build using the library. The distributed NORM Makefiles have - D_FI LE_OFFSET_BI TS=64 set
in the compilation to enable "large file support". Applications built using NORM should have the same compilation
option set to operate correctly (The definition of the Nor ni ze type in "nor maApi . h" depends upon this compilation

flag).
3.2.Win32/WINCE Platforms

NORM has been built using Microsoft's Visual C++ (6.0 and .NET) and Embedded VC++ 4.2 environments. In
addition to proper macro definitions (e.g., HAVE_IPV®, etc) that are included in the respective "Protokit" and
"NORM" project files, it is important that common code generation settings be used when building the NORM
application. The NORM and Protokit projects are built with the "Multi-threading DLL" library usage set. The
NORM API requires multi-threading support. This is a critical setting and numerous compiler and linker errors
will result if this is not properly set for your application project.

NORM and Protokit also depend on the Winsock 2.0 ("ws2_32.1i b" (or "ws2. i b" (WIinCE)) and the IP Helper
API ("i phl papi . I'i b") libraries and these must be included in the project "Link" attributes.

An additional note is that a bug in VC++ 6.0 and earlier compilers (includes embedded VC++ 4.x compilers)
prevent compilation of Protokit-based code with debugging capabilities enabled. However, this has been resolved
in VC++ .NET and is hoped to be resolved in the future for the WinCE build tools.

Operation on Windows NT4 (and perhaps other older Windows operating systems) requires that the compile time
macro W NVER=0x0400 defined. This is because the version of the IP Helper API library (i phl papi . I i b) used by
Protolib (and hence NORM) for this system doesn't support some of the functions defined for this library. This
may be related to IPv6 support issues so it may be possible that the Protolib build could be tweaked to provide a
single binary executable suitable for IPv4 operation only across a large range of Windows platforms.

4. APl Reference

This section provides a reference to the NORM API variable types, constants and functions.

4.1. API Variable Types and Constants

The NORM API defines and enumerates a number of supporting variable types and values which are used in dif-
ferent function calls. The variable types are described here.

NORM Developer's Guide

4.1.1. NormlnstanceHandle

The Nor mi nst anceHand! e type is returned when a NORM API instance is created (see Nor nCr eat el nst ance()).
This handle can be subsequently used for API calls which require reference to a specific NORM API instance. By
default, each NORM API instance instantiated creates an operating system thread for protocol operation. Note that
multiple NORM transport sessions may be created for a single API instance. In general, it is expected that applic-
ations will create a single NORM API instance, but some multi-threaded application designs may prefer multiple
corresponding NORM API instances. The value NORM | NSTANCE_| NVALI D corresponds to an invalid API instance.

4.1.2. NormSessionHandle

The Nor nSessi onHandl e type is used to reference NORM transport sessions which have been created using the
Nor nCr eat eSessi on() API call. Multiple Nor nBessi onHandl e values may be associated with a given Nor m n-
st anceHandl e. The special value NORM SESSI ON_I NVALI D is used to refer to invalid session references.

4.1.3. NormSessionld

The Nor nBessi onl d type is used by applications to uniquely identify their instance of participation as a sender
within a NormSession. This type is a parameter to the Nor nSt ar t Sender () function. Robust applications can use
different Nor nSessi onl d values when initiating sender operation so that receivers can discriminate when a sender
has terminated and restarted (whether intentional or due to system failure). For example, an application could
cache its prior Nor nSessi onl d value in non-volatile storage which could then be recovered and incremented (for
example) upon system restart to produce a new value. The Nor nSessi onl d value is used for the value of the in-
stance_id field in NORM protocol sender messages (see the NORM protocol specification) and receivers use this
field to detect sender restart within a NormSession.

4.1.4. NormNodeHandle

The Nor mNodeHandl e type is used to reference state kept by the NORM implementation with respect to other
participants within a NormSession. Most typically, the Nor mNodeHand! e is used by receiver applications to
dereference information about remote senders of data as needed. The special value NORM_NODE_| NVALI Dcorresponds
to an invalid reference.

4.1.5. NormNodeld

The Nor mNodel d type corresponds to a 32-bit numeric value which should uniquely identify a participant (node)
in a given NormSession. The Nor mNodeGet | d() function can be used to retrieve this value given a valid Nor mNode-
Handl e. The special value NORM_NODE_NONE corresponds to an invalid (or null) node while the value NORM_NCDE_ANY
serves as a wild card value for some functions.

4.1.6. NormObjectHandle

The Nor mbj ect Handl e type is used to reference state kept for data transport objects being actively transmitted
or received. The state kept for NORM transport objects is temporary, but the NORM API provides a function to
persistently retain state associated with a sender or receiver Nor mbj ect Handl e (See Nor mbj ect Ret ai n()) if
needed. For sender objects, unless explicitly retained, the Nor moj ect Handl e can be considered valid until the
referenced object is explicitly canceled (see Nor mbj ect Cancel ()) or purged from the sender transmission queue
(see the event NORM _TX_OBJECT_PURGED). For receiver objects, these handles should be treated as valid only until
a subsequent call to Nor nGet Next Event () unless, again, specifically retained. The special value NORM OBJECT I N-
VALI D corresponds to an invalid transport object reference.

4.1.7. NormObjectType

The Nor nObj ect Type type is an enumeration of possible NORM data transport object types. As previously men-
tioned, valid types include:

1. NORM OBJECT FI LE

2. NORM OBJECT_DATA, and

NORM Developer's Guide

3. NORM OBJECT_STREAM

Given a Nor mObj ect Handl e, the application may determine an object's type using the Nor mbj ect Get Type()
function call. A special Nor moj ect Type value, NORM_OBJECT_NONE, indicates an invalid object type.

4.1.8. NormSize

The Nor ni ze is the type used for NormObject size information. For example, the Nor mbj ect Get Si ze() function
returns a value of type Nor nsi ze. The range of Nor nSi ze values depends upon the operating system and NORM
library compilation settings. With "large file support" enabled, as is the case with distributed NORM library
"Makefiles", the Nor n5i ze type is a 64-bit integer. However, some platforms may support only 32-bit object sizes.

4.1.9. NormObjectTransportid

The Nor nbj ect Transpor t | d type is a 16-bit numerical value assigned to NormObjects by senders during active
transport. These values are temporarily unique with respect to a given sender within a NormSession and may be
"recycled" for use for future transport objects. NORM sender nodes assign these values in a monotonically increasing
fashion during the course of a session as part of protocol operation. Typically, the application should not need access
to these values, but an API call such as Nor mbj ect Get Transport 1 d() (TBD) may be provided to retrieve these
values if needed. (Note this type may be deprecated; i.e., it may not be needed at since the Nor mRequeuej ect ()
function is implemented using handles only, but _some_ applications requiring persistence even after a system
reboot may need the ability to recall previous transport ids?)

4.1.10. NormEventType

The Nor nEvent Type is an enumeration of NORM API events. "Events" are used by the NORM API to signal the
application of significant NORM protocol operation events (e.g., receipt of a new receive object, etc). A description
of possible Nor mEvent Type values and their interpretation is given below. The function call Nor nGet Next Event ()
is used to retrieve events from the NORM protocol engine.

4.1.11. NormEvent

The Nor nEvent type is a structure used to describe significant NORM protocol events. This structure is defined
as follows:

typedef struct

{
Nor nEvent Type type;
Nor nSessi onHandl e sessi on;
Nor mNodeHandl| e node;
Nor mObj ect Handl e obj ect;
} Nor nEvent;

The t ype field indicates the Nor nEvent Type and determines how the other fields should be interpreted. Note that
not all Nor nEvent Type fields are relevant to all events. The sessi on, node, and obj ect fields indicate the applicable
Nor mSessi onHandl e, Nor mNodeHand! e, and Nor mObj ect Handl e, respectively, to which the event applies. NORM
protocol events are made available to the application via the Nor nGet Next Event () function call.

4.1.12. NormDescriptor

The Nor nDescr i pt or type can provide a reference to a corresponding file descriptor (Unix int or Win32 HANDLE)
for the Norminstance. For a given Nor m nst anceHand| e, the Nor nGet Descr i pt or () function can be used to retrieve
a Nor mDescri pt or value that may, in turn, used in appropriate system calls (e.g. sel ect () or Msg\Wai t For Mul -
tipl edvj ect s()) to asynchronously monitor the NORM protocol engine for notification events (see Nor nEvent
description).

4.1.13. NormFlushMode

The Nor nFl ushMode type consists of the following enumeration:

10

NORM Developer's Guide

enum Nor nl ushMbde

{
NORM_FLUSH_NONE,
NORM _FLUSH_PASSI VE,
NORM_FLUSH_ACTI VE
b

The use and interpretation of these values is given in the descriptions of Nor nt r eanFl ush() and Nor St r eam
Set Aut oFl ush() functions.

4.1.14. NormProbingMode

The Nor nPr obi nghbde type consists of the following enumeration:

enum Nor nPr obi nghbde

{
NORM _PROBE_NONE,
NORM_PROBE_PASSI VE,
NORM_PROBE_ACTI VE
) ©

The use and interpretation of these values is given in the description of Nor nSet Gr t t Pr obi ngvbde() function.

4.1.15. NormSyncPolicy

The Nor nSyncPol i cy type consists of the following enumeration:
enum Nor nSyncPol i cy

NORM_SYNC_CURRENT,
NORM_SYNC_ALL
) ;

The use and interpretation of these values is given in the descriptions of the Nor nSet Def aul t SyncPol i cy()
function.

4.1.16. NormNackingMode

The Nor mNacki nghbde type consists of the following enumeration:
enum Nor mNacki nghbde

NORM_NACK_ NONE,
NORM NACK_| NFO_ONLY,
NORM_NACK_ NORMAL

b

The use and interpretation of these values is given in the descriptions of the Nor nSet Def aul t Nacki ngvbde(),
Nor mNodeSet Nacki ngMbde() and Nor mCbj ect Set Nacki ngvbde() functions.

4.1.17. NormRepairBoundary

The Nor nRepai r Boundar y types consists of the following enumeration:

enum Nor nRepai r Boundar y

{
NORM_BOUNDARY_BLOCK,

NORM_BOUNDARY_OBJECT
) ©

The interpretation of these values is given in the descriptions of the Nor nSet Def aul t Repai r Boundary() and
Nor mNodeSet Repai r Boundar y() functions.

11

NORM Developer's Guide

4.1.18. NormAckingStatus

The Nor macki ngSt at us consist of the following enumeration:

enum Nor mAcki ngSt at us

{
NORM ACK_| NVALI D,
NORM_ACK_FAI LURE,
NORM_ACK_PENDI NG,
NORM ACK_SUCCESS
) ;

The interpretation of these values is given in the descriptions of the Nor nGet Acki ngSt at us() function.

4.2. API Initialization and Operation

The first step in using the NORM API is to create an "instance" of the NORM protocol engine. Note that multiple
instances may be created by the application if necessary, but generally only a single instance is required since
multiple NormSessions may be managed under a single NORM API instance.

4.2.1. NormCreatelnstance()

4.2.1.1. Synopsis
#i ncl ude <nor mApi . h>

Nor m nst anceHandl e Nor nCr eat el nst ance(bool priorityBoost = fal se);
4.2.1.2. Description

This function creates an instance of a NORM protocol engine and is the necessary first step before any other API
functions may be used. With the instantiation of the NORM protocol engine, an operating system thread is created
for protocol execution. The returned Nor m nst anceHandl e value may be used in subsequent API calls as needed,
such Nor nCr eat eSessi on(), etc. The optional pri orit yBoost parameter, when set to a value of true, specifies
that the NORM protocol engine thread be run with higher priority scheduling. On Win32 platforms, this corresponds
to THREAD PRI ORI TY_TI ME_CRI TI CAL and on Unix systems with the sched_set schedul er () API, an attempt to
get the maximum allowed SCHED_FI FOpriority is made. The use of this option should be carefully evaluated since,
depending upon the application's scheduling priority and NORM API usage, this may have adverse effects instead
of a guaranteed performance increase!

4.2.1.3. Return Values

A value of NORM | NSTANCE_| NVALI Diis returned upon failure. The function will only fail if system resources are
unavailable to allocate the instance and/or create the corresponding thread.

4.2.2. NormDestroylnstance()
4.2.2.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mDest royl nst ance(Nor m nst anceHandl e i nst anceHand! e) ;
4.2.2.2. Description

The Nor nDest r oyl nst ance() function immediately shuts down and destroys the NORM protocol engine instance
referred to by thei nst anceHand! e parameter. The application should make no subsequent references to the indicated
Nor ml nst anceHandl e or any other API handles or objects associated with it. However, the application is still re-
sponsible for releasing any object handles it has retained (see Nor mbj ect Ret ai n() and Nor mObj ect Rel ease()).

12

NORM Developer's Guide

4.2.2.3. Return Values

The function has no return value.

4.2.3. NormStoplnstance()

4.2.3.1. Synopsis

#i ncl ude <nor mMApi . h>

voi d Nor nt opl nst ance(Nor ml nst anceHandl e i nst anceHandl e) ;
4.2.3.2. Description

This function immediately stops the NORM protocol engine thread corresponding to the given i nst anceHandl e
parameter. It also posts a "dummy" notification event so that if another thread is blocked on a call to Nor nGet Nex-
t Event (), that thread will be released. Hence, for some multi-threaded uses of the NORM API, this function may
be useful as a preliminary step to safely coordinate thread shutdown before a call is made to Nor nDest r oyl n-
stance() . After Nor mSt opl nst ance() is called and any pending events posted prior to its call have been retrieved,
Nor mGet Next Event () will return a value of f al se.

When this function is invoked, state for any NormSessions associated with the given instance is "frozen". The
complementary function, Nor nRest ar t | nst ance() can be subsequently used to "unfreeze” and resume NORM
protocol operation (a new thread is created and started).

4.2.3.3. Return Values

The function has no return value.

4.2.4. NormRestartinstance()

4.2.4.1. Synopsis

#i ncl ude <nor mMApi . h>

bool NornRestart| nstance(Norm nstanceHandl e i nst anceHandl e) ;
4.2.4.2. Description

This function creates and starts an operating system thread to resume NORM protocol engine operation for the
given i nst anceHandl e that was previously stopped by a call to Nor St opl nst ance() . It is not expected that this
function will be used often, but there may be special application cases where "freezing" and later resuming NORM
protocol operation may be useful.

4.2.4.3. Return Values

The function returns t r ue when the NORM protocol engine thread is successfully restarted, and f al se otherwise.
4.2.5. NormSetCacheDirectory()

4.2.5.1. Synopsis

#i ncl ude <nor mApi . h>

bool Nor nBSet CacheDi r ect or y(Nor nl nst anceHandl| e i nst anceHandl e,
const char* cachePat h) ;

4.2.5.2. Description

This function sets the directory path used by receivers to cache newly-received NORM OBJECT_FI LE content. The
i nst anceHandl e parameter specifies the NORM protocol engine instance (all NormSessions associated with that
i nst anceHandl e share the same cache path) and the cachePat h is a string specifying a valid (and writable) dir-
ectory path.

13

NORM Developer's Guide

4.2.5.3. Return Values

The function returns t r ue on success and f al se on failure. The failure conditions are that the indicated directory
does not exist or the process does not have permissions to write.

4.2.6. NormGetNextEvent()

4.2.6.1. Synopsis
#i ncl ude <nor mMApi . h>

bool Nor mGet Next Event (Nor m nst anceHandl e i nst anceHandl e,
Nor nEvent * t heEvent) ;

4.2.6.2. Description

This function retrieves the next available NORM protocol event from the protocol engine. The i nst anceHandl e
parameter specifies the applicable NORM protocol engine, and the t heEvent parameter must be a valid pointer
to a Nor nEvent structure capable of receiving the NORM event information. For expected reliable protocol oper-
ation, the application should make every attempt to retrieve and process NORM notification events in a timely
manner.

Note that this is currently the only blocking call in the NORM API. But non-blocking operation may be achieved
by using the Nor nGet Descri pt or () function to obtain a descriptor (int for Unix or HANDLE for WIN32) suitable
for asynchronous input/output (I/O) notification using such system calls the Unix sel ect () or Win32 wai t For -
Ml ti pl etoj ects() calls. The descriptor is signaled when a notification event is pending and a call to Nor nGet -
Next Event () will not block.Nor nGet Next Event

4.2.6.3. Return Values

The function returns t r ue when a NormEvent is successfully retrieved, and f al se otherwise. Note that a return
value of f al se does not indicate an error or signify end of NORM operation.

4.2.6.4. NORM Notification Event Types

The following table enumerates the possible Nor nEvent values and describes how these notifications should be
interpreted as they are retrieved by the application via the Nor mGet Next Event () function call.

Sender Notifications:

NORM_TX_QUEUE_VACANCY This event indicates that there is room for additional transmit objects to be en-
gueued, or, if the handle of NORM OBJECT_STREAMIs given in the corresponding
event "object" field, the application may successfully write to the indicated stream
object. Note this event is not dispatched until a call to Nor nFi | eEnqueue(),
Nor mDat aEnqueue(), or Nor nStreamW it e() fails because of a filled transmit
cache or stream buffer.

NORM_TX_QUEUE_EMPTY This event indicates the NORM protocol engine has no new data pending trans-
mission and the application may enqueue additional objects for transmission. If
the handle of a sender NORM OBJECT_STREAMIS given in the corresponding event
"object" field, this indicates the stream transmit buffer has been emptied and the
sender application may write to the stream (Use of NORM_TX_QUEUE_VACANCY may
be preferred for this purpose since it allows the application to keep the NORM
protocol engine busier sending data, resulting in higher throughput when attempting
very high transfer rates).

NORM_TX_FLUSH_COMVPLETED | This event indicates that the flushing process the NORM sender observes when
it no longer has data ready for transmission has completed. The completion of the
flushing process is a reasonable indicator (with a sufficient NORM "'robust factor"
value) that the receiver set no longer has any pending repair requests. Note the
use of NORM's optional positive acknowledgement feature is more deterministic
in this regards, but this notification is useful when there are non-acking (NACK-

14

NORM Developer's Guide

only) receivers. The default NORM robust factor of 20 (20 flush messages are
sent at end-of-transmission) provides a high assurance of reliable transmission,
even with packet loss rates of 50%.

NORM_TX_WATERMARK_COM-
PLETED

This event indicates that the flushing process initiated by a prior application call
to Nor mSet Wat er mar k() has completed The posting of this event indicates the
appropriate time for the application to make a call Nor nGet Acki ngSt at us() to
determine the results of the watermark flushing process.

NORM_TX_OBJECT_SENT

This event indicates that the transport object referenced by the event's "object"
field has completed at least one pass of total transmission. Note that this does not
guarantee that reliable transmission has yet completed; only that the entire object
content has been transmitted. Depending upon network behavior, several rounds
of NACKing and repair transmissions may be required to complete reliable
transfer.

NORM TX_OBJECT PURGED

This event indicates that the NORM protocol engine will no longer refer to the
transport object identified by the event's "object’ field. Typically, this will occur
when the application has enqueued more objects than space available within the
set sender transmit cache bounds (see Nor nSet TxCacheBounds()). Posting of
this notification means the application is free to free any resources (memory, files,
etc) associated with the indicated "object". After this event, the given "object"
handle (Nor moj ect Handl) is no longer valid unless it is specifically retained
by the application.Nor mObj ect Handl e

NORM TX_CMD_SENT

This event indicates that an application-defined command previously enqueued
with a call to Nor nSendCormmand() has been transmitted, including any repetition.

NORM_TX_RATE_CHANGED

This event indicates that NORM Congestion Control operation has adjusted the
transmission rate. The Nor mGet TxRat e() call may be used to retrieve the new
corresponding transmission rate. Note that if Nor nSet Congest i onCont r ol () was
called with its adj ust Rat e parameter setto f al se, then no actual rate change has
occurred and the rate value returned by Nor nGet TxRat e() reflects a "suggested”
rate and not the actual transmission rate.

NORM_LOCAL_SENDER _CLOSED

This event is posted when the NORM protocol engine completes the "graceful
shutdown" of its participation as a sender in the indicated "session™ (see Nor m
St opSender ()).

NORM CC_ACTI VE

This event indicates that congestion control feedback from receivers has begun
to be received (This also implies that receivers in the group are actually present
and can be used as a cue to begin data transmission.). Note that congestion control
must be enabled (see Nor nSet Congest i onCont r ol ()) for this event to be posted.
Congestion control feedback can be assumed to be received until a NORM CC_| N-
ACTI VE event is posted.

NORM_CC_| NACTI VE

This event indicates there has been no recent congestion control feedback received
from the receiver set and that the local NORM sender has reached its minimum
transmit rate. Applications may wish to refrain from new data transmission until
a NORM_CC_ACTI VE event is posted. This notification is only posted when conges-
tion control operation is enabled (see Nor nSet Congesti onControl ()) and a
previous NORM CC_ACTI VE event has occurred.

Receiver Natifications:

NORM_REMOTE_SENDER_NEW

This event is posted when a receiver first receives messages from a specific remote
NORM sender. This marks the beginning of the interval during which the applic-
ation may reference the provided "node™ handle (Nor mNodeHandl e).

NORM REMOTE_SENDER ACTI VE

This event is posted when a previously inactive (or new) remote sender is detected
operating as an active sender within the session.

NORM REMOTE_SENDER | NACT-
| VE

This event is posted after a significant period of inactivity (no sender messages
received) of a specific NORM sender within the session. The NORM protocol
engine frees buffering resources allocated for this sender when it becomes inactive.

15

NORM Developer's Guide

NORM REMOTE_SENDER PURGED

This event is posted when the NORM protocol engine frees resources for, and
thus invalidates the indicated "node™ handle.

NORM_RX_OBJECT NEW

This event is posted when reception of a new transport object begins and marks
the beginning of the interval during which the specified "object” (Nor mo-
j ect Handl e) is valid.

NORM_RX_OBJECT_| NFO

This notification is posted when the NORM | NFOcontent for the indicated "object"
is received.

NORM_RX_CBJECT_UPDATED

This event indicates that the identified receive "object" has newly received data
content.

NORM_RX_OBJECT COMPLETED

This event is posted when a receive object is completely received, including
available NOrRM I NFOcontent. Unless the application specifically retains the "object"
handle, the indicated Nor moj ect Handl e becomes invalid and must no longer be
referenced.

NORM_RX_OBJECT_ABORTED

This notification is posted when a pending receive object's transmission is aborted
by the remote sender. Unless the application specifically retains the "object"
handle, the indicated Nor mbj ect Handl e becomes invalid and must no longer be
referenced.

NORM RX_CMD_NEW

This event indicates that an application-defined command has been received from
a remote sender. The NormEvent node element indicates the NormNodeHandle
value associated with the given sender. The Nor mNodeGet Command() call can be
used to retrieve the received command content.

Miscellaneous Notifications:

NORM_GRTT_UPDATED

This notification indicates that either the local sender estimate of GRTT has
changed, or that a remote sender's estimate of GRTT has changed. The "sender"
member of the Nor nEvent is set to NORM NODE_I NVALI D if the local sender's
GRTT estimate has changed or to the Nor mNodeHandl e of the remote sender that
has updated its estimate of GRTT.

NORM_EVENT_| NVALI D

This Nor nEvent Type indicates an invalid or "null" notification which should be
ignored.

4.2.6.5. Return Values

This function generally blocks the thread of application execution until a Nor nEvent is available and returns t r ue

when a Nor nEvent is available.

However, there are some exceptional cases when the function may immediately

return even when no event is pending. In these cases, the return value is f al se indicating the Nor mEvent should

be ignored.

Win32 Note: A future version of this API will provide an option to have a user-defined Vindow message posted
when a NORM API event is pending. (Also some event filtering calls may be provided (e.g. avoid the potentially
numerous NORM_RX_OBJECT_UPDATED events if not needed by the application)).

4.2.7. NormGetDescriptor()

4.2.7.1. Synopsis

#i ncl ude <nor mApi . h>

Nor mDescr i pt or Nor nfeet Descr i pt or (Nor ml nst anceHandl e i nst ance) ;

4.2.7.2. Description

This function is used to retrieve a Nor mDescri pt or (Unix int file descriptor or Win32 HANDLE) suitable for
asynchronous 1/0 notification to avoid blocking calls to Nor nGet Next Event (). A Nor nDescri pt or is available
for each protocol engine instance created using NormCreatelnstance(). The descriptor returned is suitable for use
as an input (or "read") descriptor which is signaled when a NORM protocol event is ready for retrieval via Nor m
Get Next Event () . Hence, a call to Nor nGet Next Event () will not block when the descriptor has been signaled.

16

NORM Developer's Guide

The Unix sel ect () or Win32 Wi t For Ml ti pl eQbj ect s() system calls can be used to detect when the Nor m
Descri ptor is signaled. Note that for Unix sel ect () call usage, the NORM descriptor should be treated as a
"read" descriptor.

4.2.7.3. Return Values

A NormDescriptor value is returned which is valid until a call to Nor nDest r oyl nst ance() is made. Upon error,
a value of NORM_DESCRI PTOR_| NVALI D is returned.

4.3. Session Creation and Control Functions

Whether participating in a NORM protocol session as a sender, receiver, or both, there are some common API
calls used to instantiate a NormSession and set some common session parameters. Functions are provided to control
network socket and multicast parameters. Additionally, a "user data" value may be associated with a Nor nSessi on-
Handl e for programming convenience when dealing with multiple sessions.

4.3.1. NormCreateSession()

4.3.1.1. Synopsis

#i ncl ude <nor mApi . h

Nor mBSessi onHandl e Nor nCr eat eSessi on(Nor ml nst anceHandl| e i nst ance,
const char* addr ess,
unsi gned short port,

Nor mNodel d | ocal I d);

4.3.1.2. Description

This function creates a NORM protocol session (NormSession) using the addr ess (multicast or unicast) and por t
parameters provided. While session state is allocated and initialized, active session participation does not begin
until a call is made to Nor nSt ar t Sender () and/or Nor nSt ar t Recei ver () to join the specified multicast group
(if applicable) and start protocol operation. The following parameters are required in this function call:

i nst ance This must be a valid Nor m nst anceHandl e previously obtained with a call to Nor nCr eat el n-
stance() .
addr ess This points to a string containing an IP address (e.g. dotted decimal IPv4 address (or IPv6 ad-

dress) or name resolvable to a valid IP address. The specified address (along with the port
number) determines the destination of NORM messages sent. For multicast sessions, NORM
senders and receivers must use a common multicast address and port number. For unicast ses-
sions, the sender and receiver must use a common port number, but specify the other node's IP
address as the session address (Although note that receiver-only unicast nodes who are
providing unicast feedback to senders will not generate any messages to the session IP address
and the address parameter value is thus inconsequential for this special case).

por t This must be a valid, unused port number corresponding to the desired NORM session address.
See the address parameter description for more details.

local ld Thel ocal | d parameter specifies the Nor mNodel d that should be used to identify the application's
presence in the NormSession. All participant's in a NormSession should use unique | ocal I d
values. The application may specify a value of NORM NODE_ANY or NORM NODE_ANY for the
I ocal | d parameter. In this case, the NORM implementation will attempt to pick an identifier
based on the host computer's "default" IP address (based on the computer's default host name).
Note there is a chance that this approach may not provide unique node identifiers in some
situations and the NORM protocol does not currently provide a mechanism to detect or resolve
Nor mNodel d collisions. Thus, the application should explicitly specify the | ocal I d unless there
is a high degree of confidence that the default IP address will provide a unique identifier.

4.3.1.3. Return Values

The returned Nor nSessi onHandl e value is valid until a call to Nor nDest r oySessi on() is made. A value of
NORM_SESSI ON_I NVALI Diis returned upon error.

17

NORM Developer's Guide

4.3.2. NormDestroySession()

4.3.2.1. Synopsis

#i ncl ude <nor mMApi . h>

voi d Nor mDest r oySessi on(Nor nSessi onHandl e sessi onHandl €) ;
4.3.2.2. Description

This function immediately terminates the application’s participation in the NormSession identified by the sessi on-
Handl e parameter and frees any resources used by that session. An exception to this is that the application is re-
sponsible for releasing any explicitly retained Nor mbj ect Handl e values (See Nor mObj ect Ret ai n() and Nor mb-
j ect Rel ease()).

4.3.2.3. Return Values

This function has no returned values.

4.3.3. NormSetUserData()
4.3.3.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nfSet User Dat a(Nor nSessi onHandl e sessi onHandl e,
const voi d* user Dat a) ;

4.3.3.2. Description

This function allows the application to attach a value to the previously-created NormSession instance specified by
the sessi onHandl e parameter. This value is not used or interpreted by NORM, but is available to the application
for use at the programmer's discretion. The set user Dat a value can be later retrieved using the Nor nGet User Dat a()
function call.

4.3.3.3. Return Values

This function has no returned values.

4.3.4. NormGetUserData()

4.3.4.1. Synopsis
#i ncl ude <nor mApi . h>
const voi d* Nor nfet User Dat a(Nor mBessi onHandl e sessi onHandl e) ;

4.3.4.2. Description

This function retrieves the "user data" value set for the specified sessi onHandl e with a prior call to Nor nSet User -
Dat a() .

4.3.4.3. Return Values

This function returns the user data value set for the specified session. If no user data value has been previously
set,a NULL (i.e., (const voi d*)0) value is returned.

18

NORM Developer's Guide

4.3.5. NormGetLocalNodeld()

4.3.5.1. Synopsis

#i ncl ude <nor mMApi . h>

Nor mNodel d Nor ntGet Local Nodel d(Nor nSessi onHandl e sessi onHandl e) ;
4.3.5.2. Description

This function retrieves the Nor mNode! d value used for the application’s participation in the NormSession identified
by the sessi onHandl e parameter. The value may have been explicitly set during the Nor nCr eat eSessi on() call
or may have been automatically derived using the host computer's "default” IP network address.

4.3.5.3. Return Valuess

The returned value indicates the NormNode identifier used by the NORM protocol engine for the local application's
participation in the specified NormSession.

4.3.6. NormSetTxPort()

4.3.6.1. Synopsis
#i ncl ude <nor mMApi . h>

bool Nor nSet TxPort (Nor nSessi onHandl e sessi onHandl e,

unsi gned short txPort,
bool enabl eReuse = fal se,
const char* t xBi ndAddress = (const char*)O0);

4.3.6.2. Description

This function is used to force NORM to use a specific port number for UDP packets sent for the specified sessi on-

Handl e. Additionally, it can optionally enable reuse of the specified port number and/or specify a specific source
address binding that is used for packet transmission. By default, NORM uses separate port numbers for packet
transmission and session packet reception (the receive port is specified as part of the Nor nCr eat eSessi on() call),
allowing the operating system to pick a freely available port for transmission. This call allows the application to
pick a specific port number for transmission, and furthermore allows the application to even specify the same port
number for transmission as is used for reception. However, the use of separate transmit/receive ports allows NORM
to discriminate when unicast feedback is occurring and thus it is not generally recommended that the transmit port
be set to the same value as the session receive port.

The enabl eReuse parameter, when set to t r ue, allows that the specified port may be reused for multiple sessions,
but care must be taken when enabling this option. The t xBi ndAddr ess parameter allows specification of a specific
source address binding for packet transmission. The specified address MUST be a valid unicast IP address assigned
and configured for the host system. Additionally, the address specified must be compatible with multicast routing
and/or the interfaces specified in any calls to Nor nSet Mul ti cast | nterface() for the given session when IP
multicast is used.

When the t xPor t is set equal to the session port number and a t xBi ndAddr ess is not specified or set equal to the
session address, a single socket is used for both transmission and reception. If the same port number is desired for
both packet transmission and reception, and a specific source address binding is set, then the enabl eReuse para-
meter MUST be (and is automatically) set to t r ue for successful operation. In this case, the receive socket is bound
to session address if it is multicast and the transmit socket is bound to the specified t xAddr ess although both are
bound to the same port number.

Note this call MUST be made before any calls to Nor nSt art Sender () Or Nor nt art Recei ver () for the given
session to work as described.

19

NORM Developer's Guide

4.3.6.3. Return Values

This function returnst r ue upon success and f al se upon failure. Failure will occur if at xBi ndAddr ess is provided
that does not correspond to a valid, configured IP address for the local host system.

4.3.7. NormSetTxOnly()

4.3.7.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nSet TxOnl y(Nor nBessi onHandl e sessi onHandl e,
bool txOnly,
bool connect ToSessi onAddress = fal se);

4.3.7.2. Description

This function limits the NormSession to perform NORM sender functions only. It also limits the underlying NORM
UDP socket usage to open only a single transmit socket (tx_socket) and does not open or bind a receive socket for
the given session address or port number. Thus, if this property is set, any NORM receivers MUST enable unicast
feedback via a call to the NormSetDefaultUnicastNack() or appropriate NormNodeSetUnicastNack() function in
order for their feedback messages (NACKs and ACKSs) to be received by this sender. The purpose of this function
is to allow NORM sender sessions to be created as separate process from a corresponding NORM receiver session
for the same session address and port number. By default (when this call is not made), a NormSession, even when
acting as only a sender (see NormStartSender()) opens two separate UDP sockets including a "receive™ socket
bound to the session port number and a "transmit" socket used for message transmission and reception of unicast
feedback messages when receivers are so configured.

The optional connect ToSessi onAddr ess parameter, when set to t r ue, causes the underlying NORM code to
"connect () " the UDP socket to the session (remote receiver) address and port number. If the corresponding NORM
remote receiver instance uses NormSetTxPort() to set its transmit port to the same as the session port number, the
result is a unique binding between this "tx only" sender instance and the remote NORM receiver instance. With
proper use of NormSetRxPortReuse(), this allows multiple senders to be properly associated (i.e., binded with respect
to UDP socket packet demultiplexing) with multiple receivers on a single host (all using the same session port
number). Note the NORM receiver MUST also use the NormSetDefaultUnicastNack() call so that its feedback
messages are directed to the "tx only"” sender address/port. The motivation for this API call is to allow systems
have NORM sender and receiver instances in separate processes supporting a set (e.g. a mesh) of unicast connections
to other hosts. The only constraint is that the senders uses a "tx port" number that is different from the "rx port"
number. This enables firewall configurations that only open a pair of UDP ports and allow for connection among
an arbitrary number of hosts. This option is really only relevant for unicast NORM sessions.

4.3.7.3. Return Values

This function has no return values.

4.3.8. NormSetRxPortReuse()
4.3.8.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nSet RxPor t Reuse(Nor nSessi onHandl e sessi on,

bool enabl eReuse,

const char* r xBi ndAddress = (const char*)O0,
const char* sender Address = (const char*)O0,
Ul NT16 sender Port = 0);

4.3.8.2. Description

This function allows the user to control the port reuse and binding behavior for the receive socket used for the
given NORM sessi onHandl e. When the enabl Reuse parameter is set to true, reuse of the NormSession port
number by multiple NORM instances or sessions is enabled.

20

NORM Developer's Guide

If the optional r xBi ndAddr ess is supplied (an IP address or host name in string form), the socket will bind() to
the given address when it is opened in a call to NormStartReceiver() or NormStartSender(). The r xBi ndAddr ess
MUST be the session multicast address (if it is a multicast session) or a valid local unicast address in the case of
NORM unicast operation. This binding limits the socket to receive only packets destined for the specified r xBi ndAd-
dress. This allows multiple NORM sessions to reuse the same port number, but use different multicast addresses
(or allow for multiple NORM sessions for multiple local unicast addresses).

The optional sender Addr ess and sender Port parameters can be used to connect() the underlying NORM receive
socket to specific address/port. This limits the socket to receiving only packets from the specified sender Ad-

dress/sender Port . This, with receive port reuse enabled, allows for multiple NORM receiver instances to be
listening to different NORM senders and have proper UDP socket demultiplexing occur. Note that it is also possible
to have single NORM receiver receive transmissions from multiple senders, but in some cases it may be desirable
for separate NORM processes or threads to be used to handle reception from separate senders. Thus, this socket
binding option is provided.

When this call is not made in any form, the default socket binding to IP address INADDR_ANY (equivalent to
when this call is made and r xBi ndAddr ess is set to NULL) allows the NormSession receive socket to receive any
multicast or unicast transmissions to the session port number provided in the call to Nor nCr eat eSessi on() . This
allows a NORM receiver to receive from senders sending to a multicast session address or the receiver's unicast
address. As mentioned, enabling port reuse and binding the session destination address allows multiple NORM
sessions on the same port number, but participating in different multicast groups.

Note this call MUST be made before any calls to Nor nSt art Sender () Or Nor nSt ar t Recei ver () for the given
sessi onHandl e to succeed.

This call could also be used in conjunction with Nor nSet Mul t i cast I nt er f ace() S0 that multiple NormSessions,
using the same port and multicast address, could separately cover multiple network interfaces (and some sort of
application-layer bridging of reliable multicast could be realized if desired).

4.3.8.3. Return Values

This function has no return values.

4.3.9. NormSetMulticastinterface()

4.3.9.1. Synopsis
#i ncl ude <nor mApi . h>

bool NornSet Mul ti cast | nterface(Nor nSessi onHandl e sessi on,
const char* i nterfaceNane);

4.3.9.2. Description

This function specifies which host network interface is used for IP Multicast transmissions and group membership.
This should be called before any call to Nor n5t ar t Sender () Or Nor nSt art Recei ver () iS made so that the IP
multicast group is joined on the proper host interface. However, if a call to Nor nSet Mul ti cast | nterface() is
made after either of these function calls, the call will not affect the group membership interface, but only dictate
that a possibly different network interface is used for transmitted NORM messages. Thus, the code:

Nor mBSet Mul ti cast | nterface(session, "interfacel");
Nor nSt art Recei ver (session, ...);
Nor mBSet Mul ti cast | nterface(session, "interface2");

will result in NORM group membership (i.e. multicast reception) being managed on "i nt er f ace1” while NORM
multicast transmissions are made via "i nt er f ace2".

21

NORM Developer's Guide

4.3.9.3. Return Values

A return value of t r ue indicates success while a return value of f al se indicates that the specified interface was
invalid. This function will always return t r ue if made before calls to Nor nSt ar t Sender () Or Nor n&t ar t Recei ver ().
However, those calls may fail if an invalid interface was specified with the call described here.

4.3.10. NormSetSSM()

4.3.10.1. Synopsis
#i ncl ude <nor mMApi . h>

bool Nor nSet SSM Nor mSessi onHandl e sessi on,
const char* sour ceAddr ess) ;

4.3.10.2. Description

This function sets the source address for Source-Specific Multicast (SSM) operation. This should be called before
any call to Nor St ar t Sender () Or Nor nSt ar t Recei ver () is made so that the proper group join is done. The re-
ceiver application MUST also use the Nor nSet Def aul t Uni cast Nack() call so that feedback traffic is directed
back to appropriate sender.

4.3.10.3. Return Values

A return value of t r ue indicates success while a return value of f al se indicates that the specified source address
was invalid. Note that if a valid IP address is specified but is improper for SSM (e.g., an IP multicast address) the
later calls to Nor nSt ar t Sender () Or Nor nt ar t Recei ver () may fail.

4.3.11. NormSetTTL()

4.3.11.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nSet TTL(Nor nSessi onHandl e sessi on,
unsi gned char ttl);

4.3.11.2. Description

This function specifies the time-to-live (tt1) for IP Multicast datagrams generated by NORM for the specified
sessi onHandl e. The IP TTL field limits the number of router "hops" that a generated multicast packet may traverse
before being dropped. For example, if TTL is equal to one, the transmissions will be limited to the local area network
(LAN) of the host computers network interface. Larger TTL values should be specified to span large networks.
Also note that some multicast router configurations use artificial "TTL threshold" values to constrain some multicast
traffic to an administrative boundary. In these cases, the NORM TTL setting must also exceed the router "TTL
threshold" in order for the NORM traffic to be allowed to exit the administrative area.

4.3.11.3. Return Values

A return value of t r ue indicates success while a return value of f al se indicates that the specified t tI could not
be set. This function will always return t r ue if made before calls to Nor n&t ar t Sender () Or Nor St art Recei ver ().
However, those calls may fail if the desired t t | value cannot be set.

4.3.12. NormSetTOS()
4.3.12.1. Synopsis

#i ncl ude <nor mApi . h>

bool Nor nSet TOS(Nor mBSessi onHandl e sessi onHandl e,
unsi gned char tos);

22

NORM Developer's Guide

4.3.12.2. Description

This function specifies the type-of-service (t os) field value used in IP Multicast datagrams generated by NORM
for the specified sessi onHandl e. The IP TOS field value can be used as an indicator that a "flow" of packets may
merit special Quality-of-Service (QoS) treatment by network devices. Users should refer to applicable QoS inform-
ation for their network to determine the expected interpretation and treatment (if any) of packets with explicit TOS
marking.

4.3.12.3. Return Values

A return value of t r ue indicates success while a return value of f al se indicates that the specified t os could not
be set. This function will always return t r ue if made before calls to Nor nt ar t Sender () Or Nor St art Recei ver ().
However, those calls may fail if the desired t os value cannot be set.

4.3.13. NormSetLoopback()

4.3.13.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfSet Loopback(Nor nSessi onHandl e sessi onHandl e,
bool | oopbackEnabl e) ;

4.3.13.2. Description

This function enables or disables loopback operation for the indicated NORM sessi onHandl e. If | oopbackEnabl e
issettot r ue, loopback operation is enabled which allows the application to receive its own message traffic. Thus,
an application which is both actively receiving and sending may receive its own transmissions. Note it is expected
that this option would be principally be used for test purposes and that applications would generally not need to
transfer data to themselves. If | oopbackEnabl e is false, the application is prevented from receiving its own NORM
message transmissions. By default, loopback operation is disabled when a NormSession is created.

4.3.13.3. Return Values

This function has no return values.
4.3.14. NormSetFragmentation()

4.3.14.1. Synopsis

#i ncl ude <nor mApi . h>

bool Nor nfSet Fr agnment at i on(Nor nSessi onHandl e sessi onHandl e,
bool fragnentation);

4.3.14.2. Description

This function sets an underlying socket option that enables or disables IP datagram fragmentation by network in-
termediate systems according to whether the f r agnent at i on parameter is set to a value of t r ue or f al se, respect-
ively. If set to t r ue to enable fragmentation, the DF (don't fragment) bit of the headers of NORM UDP/IP packets
sent will be cleared. Otherwise the DF bit is set and packets will not be fragmented by network devices if they
exceed a link Maximum Transmission Unit (MTU) and will instead be dropped. For IP Multicast destinations,
some operating systems may always set the DF bit of transmitted packets, regardless of the setting here and the
underlying socket option status. Typically, the DF bit is set (i.e., fragmentation disabled) by default on most oper-
ating systems.

This call is not currently functional on the Mac OSX system that does not support the needed | P_MrU_DI SCOVER
or | P_DONTFRAG socket options.

4.3.14.3. Return Values

This function returns t r ue upon success and f al se upon failure.

23

NORM Developer's Guide

4.4. NORM Sender Functions

The functions described in this section apply only to NORM sender operation. Applications may participate strictly
as senders or as receivers, or may act as both in the context of a NORM protocol session. The NORM sender is
responsible for most parameters pertaining to its transmission of data. This includes transmission rate, data seg-
mentation sizes, FEC coding parameters, stream buffer sizes, etc.

4.4.1. NormStartSender()

4.4.1.1. Synopsis

#i ncl ude <nor mMApi . h>

bool Nor nft art Sender (Nor nSessi onHandl e sessi onHandl e,
Nor nSessi onl d i nst ancel d,
unsi gned | ong buf f er Space,
unsi gned short segnent Si ze,
unsi gned char bl ockSi ze,
unsi gned char nunParity);

4.4.1.2. Description

The application's participation as a sender within a specified NormSession begins when this function is called.
This includes protocol activity such as congestion control and/or group round-trip timing (GRTT) feedback collection
and application API activity such as posting of sender-related Nor nEvent notifications. The parameters required
for this function call include:

sessi onHandl e |This must be a valid Nor nSessi onHandl e previously obtained with a call to Nor nCr eat eSes-
sion().

i nstancel d Application-defined value used as the i nst ance_i d field of NORM sender messages for the
application's participation within a session. Receivers can detect when a sender has terminated
and restarted if the application uses differenti nst ancel d values when initiating sender operation.
For example, a robust application could cache previous i nst ancel d values in non-volatile
storage and gracefully recover (without confusing receivers) from a total system shutdown and
reboot by using a new i nst ancel d value upon restart.

buf f er Space |This specifies the maximum memory space (in bytes) the NORM protocol engine is allowed
to use to buffer any sender calculated FEC segments and repair state for the session. The optimum
buf f er Space value is function of the network topology bandwidth*delay product and packet
loss characteristics. If the buf f er Space limit is too small, the protocol may operate less effi-
ciently as the sender is required to possibly recalculate FEC parity segments and/or provide
less efficient repair transmission strategies (resort to explicit repair) when state is dropped due
to constrained buffering resources. However, note the protocol will still provide reliable transfer.
A large buf f er Space allocation is safer at the expense of possibly committing more memory
resources.

segment Si ze | This parameter sets the maximum payload size (in bytes) of NORM sender messages (not in-
cluding any NORM message header fields). A sender's segnent Si ze value is also used by re-
ceivers to limit the payload content of some feedback messages (e.g. NORM_NACK message content,
etc.) generated in response to that sender. Note different senders within a NormSession may
use different segmentSize values. Generally, the appropriate segment size to use is dependent
upon the types of networks forming the multicast topology, but applications may choose different
values for other purposes. Note that application designers MUST account for the size of NORM
message headers when selecting a segnent Si ze. For example, the NORM_DATA message header
for a NORM_OBJECT_STREAMWith full header extensions is 48 bytes in length. In this case, the
UDP payload size of these messages generated by NORM would be up to (48 + segnent Si ze)
bytes.

bl ockSi ze This parameter sets the number of source symbol segments (packets) per coding block, for the
systematic Reed-Solomon FEC code used in the current NORM implementation. For traditional
systematic block code "(n,k)" nomenclature, the bl ockSi ze value corresponds to "k". NORM

24

NORM Developer's Guide

logically segments transport object data content into coding blocks and the bl ockSi ze parameter
determines the number of source symbol segments (packets) comprising a single coding block
where each source symbol segment is up to segnent Si ze bytes in length.. A given block’s
parity symbol segments are calculated using the corresponding set of source symbol segments.
The maximum bl ockSi ze allowed by the 8-bit Reed-Solomon codes in NORM is 255, with
the further limitation that (bl ockSi ze + nunPari ty) <= 255.

nunParity This parameter sets the maximum number of parity symbol segments (packets) the sender is
willing to calculate per FEC coding block. The parity symbol segments for a block are calculated
from the corresponding bl ockSi ze source symbol segments. In the "(n, k) " nomenclature
mention above, the nunPar i t y value correspondsto "n - k™. A property of the Reed-Solomon
FEC codes used in the current NORM implementation is that one parity segment can fill any
one erasure (missing segment (packet)) for a coding block. For a given bl ockSi ze, the maximum
numParity value is (255 - bl ockSi ze). However, note that computational complexity increases
significantly with increasing nunPari t y values and applications may wish to be conservative
with respect to nunrPar i t y Selection, given anticipated network packet loss conditions and group
size scalability concerns. Additional FEC code options may be provided for this NORM imple-
mentation in the future with different parameters, capabilities, trade-offs, and computational
requirements.

These parameters are currently immutable with respect to a sender’s participation within a NormSession. Sender
operation must be stopped (see Nor nSt opSender ()) and restarted with another call to Nor nt ar t Sender () if
these parameters require alteration. The APl may be extended in the future to support additional flexibility here,
if required. For example, the NORM protocol "i nt ance_i d" field may possibly be leveraged to permit a node to
establish multiple virtual presences as a sender within a NormSession in the future. This would allow the sender
to provide multiple concurrent streams of transport, with possibly different FEC and other parameters if appropriate
within the context of a single NormSession. Again, this extended functionality is not yet supported in this imple-
mentation.

4.4.1.3. Return Values

A value of t rue is returned upon success and f al se upon failure. The reasons failure may occur include limited
system resources or that the network sockets required for communication failed to open or properly configure.
(TBD - Provide a Nor nGet Er r or (Nor nSessi onHandl e sessi onHandl e) function to retrieve a more specific error
indication for this and other functions.)

4.4.2. NormStopSender()

4.4.2.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor n5t opSender (Nor nSessi onHandl e sessi onHandl e,
bool graceful = false);

4.4.2.2. Description

This function terminates the application's participation in a NormSession as a sender. By default, the sender will
immediately exit the session identified by the sessi onHandl e parameter without notifying the receiver set of its
intention. However a "graceful shutdown" option, enabled by setting the gr acef ul parameter to true, is provided
to terminate sender operation gracefully, notifying the receiver set its pending exit with appropriate protocol
messaging. A Nor mEvent , NORM LOCAL_SENDER_CLCSED, is dispatched when the graceful shutdown process has
completed.

4.4.2.3. Return Values

This function has no return values.

25

NORM Developer's Guide

4.4.3. NormSetTxRate()

4.4.3.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nfSet TxRat e(Nor nSessi onHandl e sessi onHandl e,
doubl e rate);

4.4.3.2. Description

This function sets the transmission r at e (in bits per second (bps)) limit used for NormSender transmissions for
the given sessi onHandl e. For fixed-rate transmission of NORM OBJECT_FI LE or NORM OBJECT_DATA, this limit
determines the data rate at which NORM protocol messages and data content are sent. For NORM_OBJECT_STREAM
transmissions, this is the maximum rate allowed for transmission (i.e. if the application writes to the stream at a
lower rate, a lower average NORM transmission rate will occur). Note that the application will need to consider
the overhead of NORM protocol headers when determining an appropriate transmission rate for its purposes. When
NORM congestion control is enabled (see Nor nSet Congesti onControl ()), the rat e set here will be set, but
congestion control operation, if enabled, may quickly readjust the transmission rate.

4.4.3.3. Return Values

This function has no return values.

4.4.4. NormGetTxRate()

4.4.4.1. Synopsis
#i ncl ude <nor mApi . h>

doubl e Nor ntGet TxRat e(Nor nSessi onHandl e sessi onHandl e) ;
4.4.4.2. Description

This function retrieves the current sender transmission rate in units of bits per second (bps) for the given sessi on-
Handl e. When NORM congestion control is enabled (see Nor nSet Congest i onCont r ol ()), this reflects the current
rate set (or suggested) by NORM congestion control operation. Otherwise, this returns the rate that was set with
the Nor nSet TxRat e() call.

4.4.4.3. Return Values

This function returns the sender transmission rate in units of bits per second (bps).

4.4.5. NormSetTxSocketBuffer()

4.4.5.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nSet TxSocket Buf f er (Nor nSessi onHandl e sessi onHandl e,
unsi gned i nt buf ferSi ze);

4.4.5.2. Description

This function can be used to set a non-default socket buffer size for the UDP socket used by the specified NORM
sessi onHandl e for data transmission. The buf f er Si ze parameter specifies the desired socket buffer size in bytes.
Large transmit socket buffer sizes may be necessary to achieve high transmission rates when NORM, as a user-
space process, is unable to precisely time its packet transmissions. Similarly, NORM receivers may need to set
large receive socket buffer sizes to achieve successful, sustained high data rate reception (see Nor nSet RxSocket -
Buf f er ()). Typically, it is more important to set the receive socket buffer size (see Nor nSet RxSocket Buf fer ())
as this maintains reliability (i.e. by avoiding receive socket buffer overflow) at high data rates while setting a larger
transmit socket buffer size allows higher average transmission rates to be achieved.

26

NORM Developer's Guide

4.4.5.3. Return Values

This function returns t r ue upon success and f al se upon failure. Possible failure modes include an invalid ses-
si onHandl e parameter, a call to Nor nSt art Recei ver () Or Nor nSt art Sender () has not yet been made for the
session, or an invalid buf f er Si ze was given. Note some operating systems may require additional system config-
uration to use non-standard socket buffer sizes.

4.4.6. NormSetFlowControl()

4.4.6.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nBSet FI owCont r ol (Nor nSessi onHandl e sessi onHandl e,
doubl e fl onCont r ol Fact or) ;

4.4.6.2. Description

This function controls a scaling factor that is used for sender timer-based flow control for the the specified NORM
sessi onHandl e. Timer-based flow control works by preventing the NORM sender application from enqueueing
new transmit objects or stream data that would purge "old" objects or stream data when there has been recent
NACK activity for those old objects or data. If the f1 owCont r ol Fact or is set to ZERQ, then the flow control
mechanism is effectively disabled. Larger f | owCont r ol Fact or values enforce more robust flow control by forcing
the sender to maintain state longer, but then larger transmit buffer, stream buffer, transmit cache bounds and receive
cache limits (see Nor nSt ar t Sender (), Nor nSt r eanOpen() , Nor nSet TxCacheBounds(), and Nor nSet RxCache-
Li mit (), respectively) may be needed to maintain throughput in larger <delay*bandwidth, loss> conditions. Ef-
fectively, a larger f | owCont r ol Fact or can favor reliability over throughput when buffer-constrained.

The 1 owCont r ol Fact or is used to compute a delay time for when a sender buffered object (or block of stream
data) may be released (i.e. purged) after transmission or applicable NACKs reception. The delay time function is:

flowControl Del ay = flowControl Factor * GRTT * (backoffFactor + 1)

where the "GRTT" is the sender's advertised GRTT estimate and the backof f Fact or is the sender's configured
timer-based feedback scaling factor.

The default value (when this function is not called) of the f | owCont r ol Fact or is 2. 0. Note that a NORM applic-
ation can also implement more explicit, deterministic flow control through use of the Nor nSet Wat er mar k() API
call, potentially even requiring positive acknowledgement of older data before enqueueing new data. Note that
using the Nor nBet Wat er mar k() API call with a NORM_NODE_NONE member in acking node list to force a "full”
watermark flush is somewhat equivalent to timer-based flow control with a f I owCont r ol Fact or equal to 2. 0 *
t xRobust Fact or .

If such explicit flow control is implemented by the application, then a reduced f | owCont r ol Fact or (0r even ZERO)
may be used. If "push mode" is enabled for a NORM OBJECT_STREAM (See Nor nt r eanSet PushEnabl e()), then
flow control has no effect for the stream.

4.4.6.3. Return Values

This function has no return values.

4.4.7. NormSetCongestionControl()

4.4.7.1. Synopsis
#i ncl ude <nor mApi . h>
voi d Nor nSet Congest i onCont r ol (Nor nSessi onHandl e sessi onHandl e,

bool enabl e,
bool adjustRate = true);

27

NORM Developer's Guide

4.4.7.2. Description

This function enables (or disables) the NORM sender congestion control operation for the session designated by
the sessi onHandl e parameter. For best operation, this function should be called before the call to Norm
Start Sender () is made, but congestion control operation can be dynamically enabled/disabled during the course
of sender operation. If the value of the enabl e parameter is t r ue, congestion control operation is enabled while
it is disabled for enable equal to f al se. When congestion control operation is enabled, the NORM sender automat-
ically adjusts its transmission rate based on feedback from receivers. If bounds on transmission rate have been set
(see Nor nBet TxRat eBounds()) the rate adjustment will remain within the set bounds. The application will be no-
tified of any changes to the sender transmission rate via a Nor mEvent of type NORM_TX_RATE_CHANGED.

The rate set by Nor et TxRat e() has no effect when congestion control operation is enabled, unlessthe adj ust Rat e
parameter here is set to f al se. When the adj ust Rat e parameter is set to f al se, the NORM Congestion Control
operates as usual, with feedback collected from the receiver set and the "current limiting receiver” identified, except
that no actual adjustment is made to the sender's transmission rate. l.e., the transmission rate that was set by
Nor mBet TxRat e() is observed by the sender regardless of the feedback received. The NORM TX_RATE_CHANGED
notification will still occur as if the rate were being adjusted and the value returned by Nor nGet TxRat e() reflects
the rate that would have been used had the adj ust Rat e parameter been enabled even though no actual rate change
has occurred. The purpose of this variation of NORM Congestion Control operation is to allow applications to get
a "suggested" rate from the NORM-CC mechanism. But, it is important to note that this "suggested" rate may or
may not be appropriate since the operation of the NORM-CC algorithm is somewhat dependent on the associated
NORM sender load on the network. For example, the "suggested” rate may be artificially high if the sender applic-
ation has not been correspondingly setting the rate and actively transmitting data at that rate. This optional mode
of operation is provided for EXPERIMENTAL purposes and is NOT RECOMMENDED for typical use of NORM.

NORM's congestion algorithm provides rate adjustment to fairly compete for available network bandwidth with
other TCP, NORM, or similarly governed traffic flows.

(TBD - Describe the Nor nSet EcnSuppor t () function as this experimental option matures.)
4.4.7.3. Return Values

This function has no return values.

4.4.8. NormSetTxRateBounds()

4.4.8.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nSet TxRat eBounds(Nor nSessi onHandl e sessi onHandl e,
doubl e rateM n,
doubl e rat eMax) ;

4.4.8.2. Description

This function sets the range of sender transmission rates within which the NORM congestion control algorithm is
allowed to operate for the given sessi onHandl e. By default, the NORM congestion control algorithm operates
with no lower or upper bound on its rate adjustment. This function allows this to be limited where r at eM n corres-
ponds to the minimum transmission rate (bps) and r at eMax corresponds to the maximum transmission rate. One
or both of these parameters may be set to values less than zero to remove one or both bounds. For example, the
call "Nor nSet TxRat eBounds(session, -1.0, 64000.0)" will set an upper limit of 64 kbps for the sender
transmission rate with no lower bound. These rate bounds apply only when congestion control operation is enabled
(see Nor nBet Congest i onCont rol ()). If the current congestion control rate falls outside of the specified bounds,
the sender transmission rate will be adjusted to stay within the set bounds.

4.4.8.3. Return Values

This function returns t rue upon success. If both rat eM n and rat evax are greater than or equal to zero, but
(rat eMax < rat eM n), the rate bounds will remain unset or unchanged and the function will return f al se.

28

NORM Developer's Guide

4.4.9. NormSetTxCacheBounds()
4.4.9.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nSet TxCacheBounds(Nor nSessi onHandl e sessi onHandl e,

Nor nSi ze si zeMax,
unsi gned i nt count M n,
unsi gned i nt count Max) ;

4.4.9.2. Description

This function sets limits that define the number and total size of pending transmit objects a NORM sender will
allow to be enqueued by the application. Setting these bounds to large values means the NORM protocol engine
will keep history and state for previously transmitted objects for a larger interval of time (depending upon the
transmission rate) when the application is actively enqueueing additional objects in response to
NORM_TX_QUEUE_EMPTY notifications. This can allow more time for receivers suffering degraded network conditions
to make repair requests before the sender "purges" older objects from its "transmit cache" when new objects are
enqueued. A NORM TX_OBJECT_PURGED notification is issued when the enqueuing of a new transmit object causes
the NORM transmit cache to overflow, indicating the NORM sender no longer needs to reference the designated
old transmit object and the application is free to release related resources as needed.

The si zeMax parameter sets the maximum total size, in bytes, of enqueued objects allowed, providing the constraints
of the count M n and count Max parameters are met. The count M n parameter sets the minimum number of objects
the application may enqueue, regardless of the objects' sizes and the si zemvax value. For example, the default
si zeMax value is 20 Mbyte and the default count M n is 8, thus allowing the application to always have at least 8
pending objects enqueued for transmission if it desires, even if their total size is greater than 20 Mbyte. Similarly,
the count Max parameter sets a ceiling on how many objects may be enqueued, regardless of their total sizes with
respect to the si zeMax setting. For example, the default count Max value is 256, which means the application is
never allowed to have more than 256 objects pending transmission enqueued, even if they are 256 very small objects.
Note that count Max must be greater than or equal to count M n and count M n is recommended to be at least two.

Note that in the case of NORM_OBJECT_FI LE objects, some operating systems impose limits (e.g. 256) on how many
open files a process may have at one time and it may be appropriate to limit the count Max value accordingly. In
other cases, a large count M n or count Max may be desired to allow the NORM sender to act as virtual cache of
files or other data available for reliable transmission. Future iterations of the NRL NORM implementation may
support alternative NORM receiver "group join" policies that would allow the receivers to request transmission
of cached content.

The utility of the Nor mRequeuej ect () API call also depends on the parameters set by this function. The Nor m
RequeueQbj ect () call will only succeed when the given obj ect Handl e corresponds to an object maintained in
the NORM senders "transmit cache".

4.4.9.3. Return Values

This function has no return value.
4.4.10. NormSetAutoParity()

4.4.10.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfSet Aut oPar i t y(Nor nSessi onHandl e sessi onHandl e,
unsi gned char autoParity);

4.4.10.2. Description

This function sets the quantity of proactive "auto parity" NORM DATA messages sent at the end of each FEC coding
block. By default (i.e., aut oPari ty = 0), FEC content is sent only in response to repair requests (NACKSs) from
receivers. But, by setting a non-zero value for aut oPar i t y, the sender can automatically accompany each coding

29

NORM Developer's Guide

block of transport object source data segments ((NORM_DATA messages) with the set number of FEC segments. The
number of source symbol messages (segments) per FEC coding block is determined by the bl ockSi ze parameter
used when Nor nst ar t Sender () was called for the given sessi onHandl e.

The use of proactively-sent "auto parity" may eliminate the need for any receiver NACKing to achieve reliable
transfer in networks with low packet loss. However, note that the quantity of "auto parity" set adds overhead to
transport object transmission. In networks with a predictable level of packet loss and potentially large round-trip
times, the use of "auto parity" may allow lower latency in the reliable delivery process. Also, its use may contribute
to a smaller amount of receiver feedback as only receivers with exceptional packet loss may need to NACK for
additional repair content.

The value of aut oPari t y set must be less than or equal to the nunPar i t y parameter set when Nor nSt ar t Sender ()
was called for the given sessi onHandl e.

4.4.10.3. Return Values

This function has no return values.
4.4.11. NormGetGrttEstimate()

4.4.11.1. Synopsis
#i ncl ude <nor mMApi . h>
doubl e Nor nGet Grtt Esti mat e(Nor nSessi onHandl e sessi onHandl e) ;

4.4.11.2. Description

This function returns the sender's current estimate(in seconds) of group round-trip timing (GRTT) for the given
NORM session. This function may be useful for applications to leverage for other purposes the assessment of
round-trip timing made by the NORM protocol engine. For example, an application may scale its own timeouts
based on connectivity delays among participants in a NORM session. Note that the NORM_GRTT_UPDATED event is
posted (see Nor mGet Next Event ()) by the NORM protocol engine to indicate when changes in the local sender or
remote senders' GRTT estimate occurs.

4.4.11.3. Return Values

This function returns the current sender group round-trip timing (GRTT) estimate (in units of seconds). A value
of - 1. 0 is returned if an invalid session value is provided.

4.4.12. NormSetGrttEstimate()

4.4.12.1. Synopsis
#i ncl ude <nor mApi . h>

voi d NornBet GrttEsti mat e(Nor nSessi onHandl e sessi onHandl e,
doubl e grtt);

4.4.12.2. Description

This function sets the sender's estimate of group round-trip time (GRTT) (in units of seconds) for the given NORM
sessi onHandl e. This function is expected to most typically used to initialize the sender's GRTT estimate prior to
the call to Nor nst ar t Sender () when the application has a priori confidence that the default initial GRTT value
of 0.5 second is inappropriate. The sender GRTT estimate will be updated during normal sender protocol operation
after sender startup or if this call is made while sender operation is active. For experimental purposes (or very
special application needs), this API provides a mechanism to control or disable the sender GRTT update process
(see Nor nBet Grt t Probi nghbde()). The grtt value (in seconds) will be limited to the maximum GRTT as set
(see Nor nBet Grt t Max()) or the default maximum of 10 seconds.

The sender GRTT is advertised to the receiver group and is used to scale various NORM protocol timers. The default
NORM GRTT estimation process dynamically measures round-trip timing to determine an appropriate operating

30

NORM Developer's Guide

value. An overly-large GRTT estimate can introduce additional latency into the reliability process (resulting in a
larger virtual delay*bandwidth product for the protocol and potentially requiring more buffer space to maintain
reliability). An overly-small GRTT estimate may introduce the potential for feedback implosion, limiting the
scalability of group size.

Also note that the advertised GRTT estimate can also be limited by transmission rate. When the sender transmission
rate is low, the GRTT is also governed to a lower bound of the nominal packet transmission interval (i.e., 1/ t xRat e).
This maintains the "event driven" nature of the NORM protocol with respect to receiver reception of NORM sender
data and commands.

4.4.12.3. Return Values

This function has no return values.

4.4.13. NormSetGrttMax()

4.4.13.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfSet Gt t Max(Nor nSessi onHandl e sessi onHandl e,
doubl e grttMax);

4.4.13.2. Description

This function sets the sender's maximum advertised GRTT value for the given NORM sessi onHandl e. The
grtt Max parameter, in units of seconds, limits the GRTT used by the group for scaling protocol timers, regardless
of larger measured round trip times. The default maximum for the NRL NORM library is 10 seconds. See the
Nor mBet Grt t Est i mat e() function description for the purpose of the NORM GRTT measurement process.

4.4.13.3. Return Values

This function has no return values.
4.4.14. NormSetGrttProbingMode()

4.4.14.1. Synopsis
#i ncl ude <nor mApi . h>

voi d NornBet G tt Probi ngMode(Nor nSessi onHandl e sessi onHandl e,
Nor nPr obi nghbde pr obi nghbde) ;

4.4.14.2. Description

This function sets the sender's mode of probing for round trip timing measurement responses from the receiver set
for the given NORM sessi onHandl e. Possible values for the pr obi ngMbde parameter include NORM_PROBE_NONE,
NORM_PROBE_PASSI VE, and NORM_PROBE_ACTI VE. The default probing mode is NORM_PROBE_ACTI VE. In this mode,
the receiver set explicitly acknowledges NORM sender GRTT probes ((NORM_CMD(CC) messages) with NORM_ACK
responses that are group-wise suppressed. Note that NORM receivers also will include their response to GRTT
probing piggy-backed on any NORM_NACK messages sent in this mode as well to minimize feedback.

Note that the NORM_PROBE_ACTI VE probing mode is required and automatically set when NORM congestion control
operation is enabled (see Nor nSet Congest i onCont r ol ()). Thus, when congestion control is enabled, the Nor m
Set Grt t Pr obi nghbde() function has no effect.

If congestion control operation is not enabled, the NORM application may elect to reduce the volume of feedback
traffic by setting the pr obi ngMbde to NORM PROBE_PASSI VE. Here, the NORM sender still transmits NORM_CVD(CC)
probe messages multiplexed with its data transmission, but the receiver set does not explicitly acknowledge these
probes. Instead the receiver set is limited to opportunistically piggy-backing responses when NORM_NACK messages
are generated. Note that this may, in some cases, introduce some opportunity for bursts of large volume receiver
feedback when the sender's estimate of GRTT is incorrect due to the reduced probing feedback. But, in some

31

NORM Developer's Guide

controlled network environments, this option for passive probing may provide some benefits in reducing protocol
overhead.

Finally, the probi ngMode can be set to NORM_PROBE_NONE to eliminate the overhead (and benefits) of NORM
GRTT measurement entirely. In this case, the sender application must explicitly set its estimate of GRTT using
the Nor nSet Gt t Esti mat e() function. See this function for a description of the purpose of the NORM GRTT
measurement.

4.4.14.3. Return Values

This function has no return values.

4.4.15. NormSetGrttProbinglinterval()

4.4.15.1. Synopsis
#i ncl ude <nor mApi . h>

voi d NornfSet G ttProbi ngl nterval (Nor nSessi onHandl e sessi onHandl e,
doubl e interval M n,
doubl e i nt erval Max) ;

4.4.15.2. Description

This function controls the sender GRTT measurement and estimation process for the given NORM sessi onHandl e.
The NORM sender multiplexes periodic transmission of NORM_CMVD(CC) messages with its ongoing data transmission
or when data transmission is idle. When NORM congestion control operation is enabled, these probes are sent
once per RTT of the current limiting receiver (with respect to congestion control rate). In this case the i nt erval M n
andi nt er val Max parameters (in units of seconds) control the rate at which the sender's estimate of GRTT is updated.
At session start, the estimate is updated ati nt er val M n and the update interval time is doubled until i nt er val Max
is reached. This dynamic allows for a rapid initial estimation of GRTT and a slower, steady-state update of GRTT.
When congestion control is disabled and NORM GRTT probing is enabled ((NORM_PROBE_ACTI VE or
NORM_PROBE_PASSI VE) thei nt er val M nandi nt er val Max values also determine the rate at which NORM_cvD(CC)
probes are transmitted by the sender. Thus by setting larger values fori nt er val M n andi nt er val Max, the NORM
sender application can reduce the overhead of the GRTT measurement process. However, this also reduces the
ability of NORM to adapt to changes in GRTT.

The default NORM GRTT i nt erval M n andi nt er val Max values, i.e., when this call is not made, are 1. 0 second
and 30. 0 seconds, respectively.

4.4.15.3. Return Values

This function has no return values.
4.4.16. NormSetBackoffFactor()

4.4.16.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nBSet Backof f Fact or (Nor nSessi onHandl e sessi onHandl e,
doubl e backof f Fact or) ;

4.4.16.2. Description

This function sets the sender's "backoff factor" for the given sessi onHandl e. The backof f Fact or (in units of
seconds) is used to scale various timeouts related to the NACK repair process. The sender advertises its backof f -
Fact or setting to the receiver group in NORM protocol message headers. The default backof f Fact or for NORM
sessions is 4. 0 seconds. The backof f Fact or is used to determine the maximum time that receivers may delay
NACK transmissions (and other feedback messages) as part of NORM's probabilistic feedback suppression technique.
For example, the maximum NACK delay time is backof f Fact or * GRTT. Thus a large backof f Fact or value intro-

32

NORM Developer's Guide

duces latency into the NORM repair process. However, a small backoffFactor value causes feedback suppression
to be less effective and increases the risk of feedback implosion for large receiver group sizes.

The default setting of 4. 0 provides reasonable feedback suppression for moderate to large group sizes when mul-
ticast feedback is possible. The NORM specification recommends a backof f Fact or value of 6. 0 when unicast
feedback is used. However, for demanding applications (with respect to repair latency) when group sizes are
modest, a small (even 0. 0) backof f Fact or value can be specified to reduce the latency of reliable data delivery.

4.4.16.3. Return Values

This function has no return values.

4.4.17. NormSetGroupSize()

4.4.17.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfSet G oupSi ze(Nor mBessi onHandl e sessi onHandl e,
unsi gned i nt groupSi ze) ;

4.4.17.2. Description

This function sets the sender's estimate of receiver group size for the given sessi onHandl e. The sender advertises
its gr oupSi ze setting to the receiver group in NORM protocol message headers that, in turn, use this information
to shape the distribution curve of their random timeouts for the timer-based, probabilistic feedback suppression
technique used in the NORM protocol. Note that the gr oupSi ze estimate does not have to be very accurate and
values within an order of magnitude of the actual group size tend to produce acceptable performance.

The default gr oupSi ze setting in NORM is 1, 000 and thus can work well for a wide range of actual receiver group
sizes. The penalty of an overly large estimate is statistically a little more latency in reliable data delivery with respect
to the round trip time and some potential for excess feedback. A substantial underestimation of gr oupSi ze increases
the risk of feedback implosion. Currently, the NORM implementation does not attempt to automatically measure
groupSi ze from receiver feedback. Applications could add their own mechanism for this (perhaps keeping explicit
track of group membership), or it is possible that future versions of the NRL NORM implementation may have
some provision for automatic gr oupSi ze estimation by the sender based on receiver feedback messages.

4.4.17.3. Return Values

This function has no return values.

4.4.18. NormSetTxRobustFactor()

4.4.18.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nSet TxRobust Fact or (Nor nSessi onHandl e sessi onHandl e,
int t xRobust Fact or) ;

4.4.18.2. Description

This routine sets the "robustness factor" used for various NORM sender functions. These functions include the
number of repetitions of "robustly-transmitted” NORM sender commands such as NORM_CVD(FLUSH) or similar
application-defined commands, and the number of attempts that are made to collect positive acknowledgement
from receivers. These commands are distinct from the NORM reliable data transmission process, but play a role
in overall NORM protocol operation. The default t xRobust Fact or value is 20. This relatively large value makes
the NORM sender end-of-transmission flushing and positive acknowledgement collection functions somewhat
immune from packet loss. However, for some applications, the default value may make the NORM protocol more
"chatty" than desired (particularly if flushing is invoked often). In other situations where the network connectivity
may be intermittent or extremely lossy, it may be useful to actually increase this value. The default value (20) is
expected to provide reasonable operation across a wide range of network conditions and application types. Since

33

NORM Developer's Guide

this value is not communicated among NORM participants as part of the protocol operation, it is important that
applications consistently set this value among all applications participating in a NORM session.

Setting t xRobust Fact or to a value of - 1 makes the redundant transmission of these commands continue indefinitely
until completion. For example, with positive acknowledgement collection, the request process will continue indef-
initely until all recipients requested acknowledge or the request is canceled by the application. Similarly, flushing
commands would be transmitted repeatedly until data transmission is resumed. Typically, setting t xRobust Fact or
to - 1 is not recommended.

4.4.18.3. Return Values
This function has no return values.
4.4.19. NormFileEnqueue()

4.4.19.1. Synopsis

#i ncl ude <nor mApi . h>

Nor mObj ect Handl e Nor nFi | eEnqueue(Nor nSessi onHandl e sessi onHandl e,
const char* fil enane,
const char* infoPtr = NULL,
unsi gned i nt infoLen = 0);

4.4.19.2. Description

This function enqueues a file for transmission within the specified NORM sessi onHandl e. Note that Nor m
Start Sender () must have been previously called before files or any transport objects may be enqueued and
transmitted. The fi | eName parameter specifies the path to the file to be transmitted. The NORM protocol engine
read and writes directly from/to file system storage for file transport, potentially providing for a very large virtual
"repair window" as needed for some applications. While relative paths with respect to the "current working directory"
may be used, it is recommended that full paths be used when possible. The optional i nf oPt r and i nf oLen para-
meters are used to associate NORM | NFO content with the sent transport object. The maximum allowed i nf oLen
corresponds to the segnent Si ze used in the prior call to Nor nt ar t Sender () . The use and interpretation of the
NORM | NFOcontent is left to the application's discretion. Example usage of NORM | NFOcontent for NORM OBJECT_FI LE
might include file name, creation date, MIME-type or other information which will enable NORM receivers to
properly handle the file when reception is complete.

The application is allowed to enqueue multiple transmit objects within in the "transmit cache" bounds (see Nor m
Set TxCacheBounds()) and enqueued objects are transmitted (and repaired as needed) within the limits determined
by automated congestion control (see Nor mSet CongestionControl ()) or fixed rate (see Nor nSet TxRat e())
parameters.

4.4.19.3. Return Values

A Nor mObj ect Handl e is returned which the application may use in other NORM API calls as needed. This handle
can be considered valid until the application explicitly cancels the object's transmission (see Nor mbj ect Cancel ())
or a NORM_TX_OBJECT_PURGED event is received for the given object. Note the application may use the Nor mo-
j ect Ret ai n() method if it wishes to refer to the object after the NORM TX_OBJECT_PURGED notification. In this
case, the application, when finished with the object, must use Nor mbj ect Rel ease() to free any resources used
or else a memory leak condition will result. A value of NORM_OBJECT_| NVALI Dis return upon error. Possible failure
conditions include the specified session is not operating as a NormSender, insufficient memory resources were
available, or the "transmit cache" limits have been reached and all previously enqueued NORM transmit objects
are pending transmission. Also the call will fail if the i nf oLen parameter exceeds the local NormSender segrent Si ze
limit.

34

NORM Developer's Guide

4.4.20. NormDataEnqueue()

4.4.20.1. Synopsis

#i ncl ude <nor mMApi . h>

Nor mObj ect Handl e Nor nDat aEnqueue(Nor nSessi onHandl e sessi onHandl e,
const char* dataPtr,
unsi gned i nt dat aLen,
const char* infoPtr = NULL,
unsi gned i nt i nfoLen = 0);

4.4.20.2. Description

This function enqueues a segment of application memory space for transmission within the specified NORM
sessi onHandl e. Note that Nor nSt ar t Sender () MUST have been previously called before files or any transport
objects may be enqueued and transmitted. The dat aPt r parameter must be a valid pointer to the area of application
memory to be transmitted and the dat aLen parameter indicates the quantity of data to transmit. The NORM protocol
engine read and writes directly from/to application memory space so it is important that the application does not
modify (or deallocate) the memory space during the time the NORM protocol engine may access this area. After
calling Nor nDat aEnqueue() for a specific application "dataPtr" memory space, the application MUST NOT
deallocate (or change the contents of) that memory space until a NORM TX_OBJECT_PURGED notification is received
for the given object or the application itself explicitly cancels the object's transmission (see Nor nbj ect Cancel ()).

The optional i nf oPtr and i nf oLen parameters are used to associate NORM_| NFO content with the sent transport
object. The maximum allowed i nf oLen corresponds to the segnment Si ze used in the prior call to Norm
St art Sender () . The use and interpretation of the NORM | NFOcontent is left to the application's discretion. Example
usage of NORM | NFOcontent for NORM_OBJECT_DATA might include application-defined data typing or other inform-
ation which will enable NORM receiver applications to properly interpret the received data when reception is
complete. Of coursg, it is possible that the application may embed such typing information in the object data content
itself. This is left to the application's discretion.

The application is allowed to enqueue multiple transmit objects within in the "transmit cache" bounds (see Nor m
Set TxCacheBounds()) and enqueued objects are transmitted (and repaired as needed) within the limits determined
by automated congestion control (see Nor nSet CongestionControl ()) or fixed rate (see Nor nSet TxRat e())
parameters.

4.4.20.3. Return Values

A Nor nObj ect Handl e is returned which the application may use in other NORM API calls as needed. This handle
can be considered valid until the application explicitly cancels the object's transmission (see Nor nbj ect Cancel ())
or a NORM_TX_OBJECT_PURGED event is received for the given object. Note the application may use the Nor mb-
j ect Retai n() method if it wishes to refer to the object after the NORM TX_OBJECT_PURGED natification. In this
case, the application, when finished with the object, must use Nor mbj ect Rel ease() to free any resources used
or else a memory leak condition will result. A value of NORM_OBJECT_| NVALI Dis return upon error. Possible failure
conditions include the specified session is not operating as a NormSender, insufficient memory resources were
available, or the "transmit cache" limits have been reached and all previously enqueued NORM transmit objects
are pending transmission. Also the call will fail if the i nf oLen parameter exceeds the local NormSender segrent Si ze
limit.

4.4.21. NormRequeueObject()
4.4.21.1. Synopsis

#i ncl ude <nor mApi . h>

bool Nor mRequeueObj ect (Nor nSessi onHandl e sessi onHandl e,
Nor nObj ect Handl e obj ect Handl e) ;

35

NORM Developer's Guide

4.4.21.2. Description

This function allows the application to resend (or reset transmission of) a NORM_OBJECT_FI LE or NORM OBJECT_DATA
transmit object that was previously enqueued for the indicated sessi onHandl e. This function is useful for applic-
ations sending to silent (non-NACKing) receivers as it enables the receivers to take advantage of multiple retrans-
missions of objects (including any auto-parity set, see Nor nSet Aut oPar i t y()) to more robustly receive content.
The obj ect Handl e parameter must be a valid transmit Nor mbj ect Handl e that has not yet been "purged"” from
the sender's transmit queue. Upon success, the specified object will be fully retransmitted using the same NORM
object transport identifier as was used on its initial transmission. This call may be made at any time to restart
transmission of a previously-enqueued object, but the NORM TX_OBJECT_SENT Or NORM TX_FLUSH_COVPLETED
notifications can serve as good cues for an appropriate time to resend an object. If multiple objects are re-queued,
they will be resent in order of their initial enqueueing.

The transmit cache bounds set by Nor nSet TxCacheBounds() determine the number of previously-sent objects
retained in the sender's transmit queue and that are thus eligible to be requeued for retransmission. An object may
be requeued via this call multiple times, but each distinct requeue should be done after an indication such as
NORM_TX_OBJECT_SENT Or NORM TX_FLUSH COVPLETED for the given object. Otherwise, the object will simply be
reset from its current transmission point to transmit from the beginning (i.e. restart). Note that the object type
NORM_OBJECT_STREAMcannot currently be requeued.

(TBD - should a "numRepeats" parameter be added to this function?)
4.4.21.3. Return Values

A value of t r ue is returned upon success and a value of f al se is returned upon failure. Possible reasons for failure
include an invalid obj ect Handl e was provided (i.e. a non-transmit object or transmit object that has been "purged"
from the transmit queue (See NORM TX_OBJECT_PURGED)) or the provided object was of type NORM OBJECT_STREAM

4.4.22. NormStreamOpen()

4.4.22.1. Synopsis

#i ncl ude <nor mMApi . h>

Nor mObj ect Handl e Nor nSt r eanOpen(Nor nSessi onHandl e sessi onHandl e,
unsi gned i nt buf fer Si ze,
const char* infoPtr = NULL,
unsi gned i nt infoLen = 0);

4.4.22.2. Description

This function opens a NORM_OBJECT_STREAMSender object and enqueues it for transmission within the indicated
sessi onHandl e. NORM streams provide reliable, in-order delivery of data content written to the stream by the
sender application. Note that no data is sent until subsequent calls to NornStreamn'ite() are made unless
NORM | NFO content is specified for the stream with the i nfoPtr and i nf oLen parameters. Example usage of
NORM_I NFO content for NORM_ OBJECT_STREAMMIght include application-defined data typing or other information
which will enable NORM receiver applications to properly interpret the received stream as it is being received.
The NORM protocol engine buffers data written to the stream for original transmission and repair transmissions
as needed to achieve reliable transfer. The buf f er Si ze parameter controls the size of the stream's "repair window"
which limits how far back the sender will "rewind" to satisfy receiver repair requests.

NORM, as a NACK-oriented protocol, currently lacks a mechanism for receivers to explicitly feedback flow
control status to the sender unless the sender application specifically leverages NORM's optional positive-acknow-
ledgement (ACK) features. Thus, the buf f er Si ze selection plays an important role in reliable delivery of NORM
stream content. Generally, a larger buf f er Si ze value is safer with respect to reliability, but some applications
may wish to limit how far the sender rewinds to repair receivers with poor connectivity with respect to the group
at large. Such applications may set a smaller buf f er Si ze to avoid the potential for large latency in data delivery
(i.e. favor peak delivery latency over full reliability). This may result in breaks in the reliable delivery of stream
data to some receivers, but this form of quasi-reliability while limiting latency may be useful for some types of
applications (e.g. reliable real-time messaging, video or sensor or media data transport). Note that NORM receivers

36

NORM Developer's Guide

can quickly, automatically "resync" to the sender after such breaks if the application leverages the application
message boundary recovery features of NORM (see Nor nSt r earrvar kEond()).

Note that the current implementation of NORM is designed to support only one active stream per session, and that
any NORM OBJECT_DATA Or NORM OBJECT_FI LE objects enqueued for transmission will not begin transmission
until an active stream is closed. Applications requiring multiple streams or concurrent file/data transfer SHOULD
generally instantiate multiple NormSessions as needed.

Note there is no corresponding "open" call for receiver streams. Receiver NORM OBJECT_STREAMs are automatically
opened by the NORM protocol engine and the receiver applications is notified of new streams via the
NORM_RX_OBJECT_NEWnotification (see Nor mGet Next Event ()).

4.4.22.3. Return Values

A Nor mObj ect Handl e is returned which the application may use in other NORM API calls as needed. This handle
can be considered valid until the application explicitly cancels the object's transmission (see Nor mbj ect Cancel ())
or a NORM_TX_OBJECT_PURGED event is received for the given object. Note the application may use the Nor mo-
j ect Retai n() method if it wishes to refer to the object after the NORM TX_OBJECT_PURGED notification. In this
case, the application, when finished with the object, must use Nor mbj ect Rel ease() to free any resources used
or else a memory leak condition will result. A value of NORM_OBJECT_| NVALI Dis return upon error. Possible failure
conditions include the specified session is not operating as a NormSender, insufficient memory resources were
available, or the "transmit cache™ bounds have been reached and all previously enqueued NORM transmit objects
are pending transmission. Also the call will fail if the i nf oLen parameter exceeds the local NormSender segnent Si ze
limit.

4.4.23. NormStreamClose()

4.4.23.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nt reanCl ose(Nor mibj ect Handl e streanHandl e,
bool graceful = false);

4.4.23.2. Description

This function halts transfer of the stream specified by the st r eanHandl e parameter and releases any resources
used unless the associated object has been explicitly retained by a call to Nor mbj ect Ret ai n() . No further calls
to Nor nst reamW i t e() will be successful for the given st r eanHandl e. The optional graceful parameter, when
set to a value of true, may be used by NORM senders to initiate "graceful” shutdown of a transmit stream. In this
case, the sender application will be notified that stream has (most likely) completed reliable transfer via the
NORM_TX_OBJECT_PURGED natification upon completion of the graceful shutdown process. When the gr acef ul

optionissettot r ue, receivers are notified of the stream end via an "stream end" stream control code in NORM_DATA
message and will receive a NORM_RX_OBJECT_COMPLETED notification after all received stream content has been
read. Otherwise, the stream is immediately terminated, regardless of receiver state. In this case, this function is
equivalent to the Nor mbj ect Cancel () routine and may be used for sender or receiver streams. So, it is expected
this function (Nor nst r eantCl ose()) will typically be used for transmit streams by NORM senders.

4.4.23.3. Return Values

This function has no return values.

4.4.24. NormStreamWrite()

4.4.24.1. Synopsis
#i ncl ude <nor mApi . h>
unsi gned i nt Nornftreanm/ite(Nor mtbj ect Handl e streanHandl e

const char* buf fer,
unsi gned i nt nunByt es) ;

37

NORM Developer's Guide

4.4.24.2. Description

This function enqueues data for transmission within the NORM stream specified by the st r eanrHandl e parameter.
The buf f er parameter must be a pointer to the data to be enqueued and the nunByt es parameter indicates the
length of the data content. Note this call does not block and will return immediately. The return value indicates
the number of bytes copied from the provided buffer to the internal stream transmission buffers. Calls to this
function will be successful unless the stream's transmit buffer space is fully occupied with data pending original
or repair transmission if the stream's "push mode" is set to false (default, see Nor nSt r eanSet PushEnabl e() for
details). If the stream's "push mode" is set to true, a call to Nor nt ream i t e() will always result in copying of
application data to the stream at the cost of previously enqueued data pending transmission (original or repair)
being dropped by the NORM protocol engine. While NORM NACK-based reliability does not provide explicit
flow control, there is some degree of implicit flow control in limiting writing new data to the stream against pending
repairs. Other flow control strategies are possible using the Nor nSet Wat er mar k() function.Nor nSet Wt er mar k()
function.

The NornEvent values NORM TX QUEUE EMPTY and NORM TX_QUEUE VACANCY are posted with the
Nor mEvent : : obj ect field set to a valid sender stream Nor mObj ect Handl e to indicate when the stream is ready
for writing via this function. Note that the NORM_TX_QUEUE_VACANCY event type is posted only after the stream'’s
transmit buffer has been completely filled. Thus, the application must make a call to Nor nSt reanmwite() that
copies less than the requested nunBytes value (return value less than nunBytes) before additional
NORM_TX_QUEUE_VACANCY events are posted for the given st r eanHandl e (i.e., the event type is not re-posted until
the application has again filled the available stream transmit buffer space). By cueing off of NORM TX_QUEUE_EMPTY,
the application can write its "freshest" available data to the stream, but by cueing off of NORM TX_QUEUE_VACANCY,
an application can keep the NORM protocol engine busiest, to achieve the maximum possible throughput at high
data rates.

4.4.24.3. Return Values

This function returns the number of bytes of data successfully enqueued for NORM stream transmission. If the
underlying send stream buffer is full, this function may return zero or a value less than the requested nunByt es.

4.4.25. NormStreamFlush()

4.4.25.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nt r eanfl ush(Nor mtbj ect Handl e streanHandl e,
bool eom = fal se,
Nor nl ushMode fl ushMbde = NORM FLUSH PASSI VE) ;

4.4.25.2. Description

This function causes an immediate "flush™ of the transmit stream specified by the st r eanHandl e parameter. Nor-
mally, unless Nor &t r eanSet Aut oFl ush() has been invoked, the NORM protocol engine buffers data written to
a stream until it has accumulated a sufficient quantity to generate a NORM_DATA message with a full payload (as
designated by the segnent Si ze parameter of the Nor nst ar t Sender () call). This results in most efficient operation
with respect to protocol overhead. However, for some NORM streams, the application may not wish wait for such
accumulation when critical data has been written to a stream. The default stream "flush" operation invoked via
Nor st r eanFl ush() for f1 ushMbde equal to NORM FLUSH_PASSI VE causes NORM to immediately transmit all
enqueued data for the stream (subject to session transmit rate limits), even if this results in NORM_DATA messages
with "small" payloads. If the optional f 1 ushMbde parameter is set to NORM FLUSH_ACTI VE, the application can
achieve reliable delivery of stream content up to the current write position in an even more proactive fashion. In
this case, the sender additionally, actively transmits NORM CVD(FLUSH) messages after any enqueued stream
content has been sent. This immediately prompt receivers for repair requests which reduces latency of reliable
delivery, but at a cost of some additional messaging. Note any such "active" flush activity will be terminated upon
the next subsequent write to the stream. If f | ushMbde is set to NORM_FLUSH_NONE, this call has no effect other than
the optional end-of-message marking described here.

38

NORM Developer's Guide

The optional eomparameter, when set to t r ue, allows the sender application to mark an end-of-message indication
(see Nor nst r eamvar kEom()) for the stream and initiate flushing in a single function call. The end-of-message in-
dication causes NORM to embed the appropriate message start byte offset in the NORM_DATA message generated
following a subsequent write to the stream with the NORM_FLAGS_MSG_START flag. This mechanism provide a means
for automatic application message boundary recovery when receivers join or re-sync to a sender mid-stream.

Note that frequent flushing, particularly for NORM_FLUSH_ACTI VE operation, may result in more NORM protocol
activity than usual, so care must be taken in application design and deployment when scalability to large group
sizes is expected.

4.4.25.3. Return Values

This function has no return values.

4.4.26. NormStreamSetAutoFlush()

4.4.26.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nft r eanSet Aut oFl ush(Nor nObj ect Handl e st reantandl e
Nor nl ushMbode f I ushMbde) ;

4.4.26.2. Description

This function sets "automated flushing™ for the NORM transmit stream indicated by the st r earHandl e parameter.
By default, a NORM transmit stream is "“flushed” only when explicitly requested by the application (see Nor m
St r eanFl ush()). However, to simplify programming, the NORM API allows that automated flushing be enabled
such that the "flush™ operation occurs every time the full requested buffer provided to a Nor nst r eam i t () call
is successfully enqueued. This may be appropriate for messaging applications where the provided buffers corresponds
to an application messages requiring immediate, full transmission. This may make the NORM protocol perhaps
more “chatty" than its typical "bulk transfer" form of operation, but can provide a useful capability for some ap-
plications.

Possible values for the flushMode parameter include NORM FLUSH _NONE, NORM FLUSH PASSI VE, and
NORM_FLUSH_ACTI VE. The default setting for a NORM stream is NORM_FLUSH_NONE where no flushing occurs unless
explicitly requested via Nor st r eanFl ush() . By setting the automated f | ushMode to NORM_FLUSH_PASSI VE, the
only action taken is to immediately transmit any data that has been written to the stream, even if "runt" NORM_DATA
messages (with payloads less than the NormSender segnent Si ze parameter) are generated as a result. If
NORM_FLUSH_ACTI VE is specified, the automated flushing operation is further augmented with the additional
transmission of NORM_CVD(FLUSH) messages to proactively excite the receiver group for repair requests.

4.4.26.3. Return Values

This function has no return values.

4.4.27. NormStreamSetPushEnable()

4.4.27.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nft r eanSet PushEnabl e(Nor nObj ect Handl e streanHandl e,
bool pushEnabl e) ;

4.4.27.2. Description

This function controls how the NORM API behaves when the application attempts to enqueue new stream data
for transmission when the associated stream's transmit buffer is fully occupied with data pending original or repair
transmission. By default (pushEnabl e = f al se), a call to Nor nSt reamW i t e() will return a zero value under this
condition, indicating it was unable to enqueue the new data. However, if pushEnabl e is set to t r ue for a given
st reanHand| e, the NORM protocol engine will discard the oldest buffered stream data (even if it is pending repair

39

NORM Developer's Guide

transmission or has never been transmitted) as needed to enqueue the new data. Thus a call to Nor nSt r eanW i t e()
will never fail to copy data. This behavior may be desirable for applications where it is more important to quickly
delivery new data than to reliably deliver older data written to a stream. The default behavior for a newly opened
stream corresponds to pushEnabl e equals f al se. This limits the rate to which an application can write new data
to the stream to the current transmission rate and status of the reliable repair process.

4.4.27.3. Return Values

This function has no return values.

4.4.28. NormStreamHasVacancy()
4.4.28.1. Synopsis
#i ncl ude <nor mMApi . h>

bool Nor nSt r eanHasVacancy(Nor nObj ect Handl e st reanHandl e) ;
4.4.28.2. Description

This function can be used to query whether the transmit stream, specified by the st r eanHandl e parameter, has
buffer space available so that the application may successfully make a call to Nor nSt r eam i t e() . Normally, a
call to NornstreamW it e() itself can be used to make this determination, but this function can be useful when
"push mode™ has been enabled (see the description of the Nor nst r eanSet PushEnabl e() function) and the applic-
ation wants to avoid overwriting data previously written to the stream that has not yet been transmitted. Note that
when "push mode™ is enabled, a call to Nor nSt r eamw i t () will always succeed, overwriting previously-enqueued
data if necessary. Normally, this function will return true after a NORM_TX_QUEUE_VACANCY natification has been
received for a given NORM stream object.

4.4.28.3. Return Values

This function returns a value of t r ue when there is transmit buffer space to which the application may write and
f al se otherwise.

4.4.29. NormStreamMarkEom()

4.4.29.1. Synopsis
#i ncl ude <nor mMApi . h>
voi d Nor nft r eaniVar kEon{ Nor nObj ect Handl e st reantandl e) ;

4.4.29.2. Description

This function allows the application to indicate to the NORM protocol engine that the last data successfully written
to the stream indicated by st r eanHandl e corresponded to the end of an application-defined message boundary.
The end-of-message indication given here will cause the NORM protocol engine to embed the appropriate message
start byte offset in the NORM_DATA message generated that contains the data for the subsequent application call to
NormStreamWrite(). Use of this end-of-message marking enables NORM receivers to automatically re-sync to
application-defined message boundaries when joining (or re-joining) a NORM session already in progress.

4.4.29.3. Return Values

This function has no return values.
4.4.30. NormSetWatermark()

4.4.30.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nfSet WAt er mar k(Nor nSessi onHandl e sessi onHandl e,

40

NORM Developer's Guide

Nor nObj ect Handl e obj ect Handl e,
bool overrideFl ush = true);

4.4.30.2. Description

This function specifies a "watermark" transmission point at which NORM sender protocol operation should perform
a flushing process and/or positive acknowledgment collection for a given sessi onHandl e. For NORM OBJECT_FI LE
and NORM OBJECT_DATA transmissions, the positive acknowledgement collection will begin when the specified
object has been completely transmitted. The obj ect Handl e parameter must be a valid handle to a previously-
created sender object (see Nor nFi | eEnqueue(), Nor nDat aEnqueue(), Or Nor St r eamOpen()). FOr NORM OB-
JECT_STREAMtransmission, the positive acknowledgment collection begins immediately, using the current position
(offset of most recent data written) of the sender stream as a reference.

The functions Nor mdddAcki ngNode() and Nor nRemoveAcki ngNode() are used to manage the list of Nor mNodel d
values corresponding to NORM receivers that are expected to explicitly acknowledge the watermark flushing
messages transmitted by the sender. Note that the Nor nNodel d NORM_NODE_NONE may be included in the list. Inclusion
of NORM_NODE_NONE forces the watermark flushing process to proceed through a full NORM_ROBUST_FACTOR number
of rounds before completing, prompting any receivers that have not completed reliable reception to the given wa-
termark point to NACK for any repair needs. If NACKs occur, the flushing process is reset and repeated until
completing with no NACKs for data through the given watermark transmission point are received. Thus, even
without explicit positive acknowledgment, the sender can use this process (by adding NORM_NODE_NONE to the
session's list of "acking nodes™) for a high level of assurance that the receiver set is "happy" (completed reliable
data reception) through the given object (or stream transmission point).

The event NORM_TX_WATERMARK_COMPLETED is posted for the given session when the flushing process or positive
acknowledgment collection has completed. The process completes as soon as all listed receivers have responded
unless NORM_NODE_NONE is included in the "acking node" list. The sender application may use the function Nor m
Get Acki ngSt at us() to determine the degree of success of the flushing process in general or for individual Nor m
Nodel d values.

The flushing is conducted concurrently with ongoing data transmission and does not impede the progress of reliable
data transfer. Thus the sender may still enqueue NormObjects for transmission (or write to the existing stream)
and the positive acknowledgement collection and flushing procedure will be multiplexed with the ongoing data
transmission. However, the sender application may wish to defer from or limit itself in sending more data until a
NORM TX_WATERMARK_COMPLETEDevent is received for the given session. This provides a form of sender->receiver(s)
flow control which does not exist in NORM's default protocol operation. If a subsequent call is made to Nor nsSet -
vat er mar k() before the current acknowledgement request has completed, the pending acknowledgment request
is canceled and the new one begins.

The optional over ri deFl ush parameter, when set to t r ue, causes the watermark acknowledgment process that is
established with this function call to potentially fully supersede the usual NORM end-of-transmission flushing
process that occurs. If overri deFl ush is set and the "watermark™ transmission point corresponds to the last
transmission that will result from data enqueued by the sending application, then the watermark flush completion
will terminate the usual flushing process. l.e., if positive acknowledgement of watermark is received from the full
"acking node list", then no further flushing is conducted. Thus, the overri deFl ush parameter should only be set
when the "acking node list" contains a complete list of intended recipients. This is useful for small receiver groups
(or unicast operation) to reduce the "chattiness" of NORM's default end-of-transmission flush process. Note that
once the watermark flush is completed and further data enqueued and transmitted, the normal default end-of-
transmission behavior will be resumed unless another "watermark" is set with over ri deFl ush enabled. Thus, as
long as new watermarks are established by successive use of this API call, this effectively "morphs” NORM into
a protocol driven by positive acknowledgement behavior.

4.4.30.3. Return Values

The function returns t r ue upon successful establishment of the watermark point. The function may return f al se
upon failure.

41

NORM Developer's Guide

4.4.31. NormCancelWatermark()

4.4.31.1. Synopsis
#i ncl ude <nor mMApi . h>
bool Nor nCancel Wat er mar k(Nor nSessi onHandl e sessi onHandl e) ;

4.4.31.2. Description

This function cancels any "watermark™ acknowledgement request that was previously set via the Nor nSet Wt er -
mar k() function for the given sessi onHandl e. The status of any NORM receivers that may have acknowledged
prior to cancellation can be queried using the Nor nGet Acki ngSt at us() function even after Nor nCancel Wat er mar k()
is called. Typically, applications should wait until a event has been posted, but in some special cases it may be
useful to terminate the acknowledgement collection process early.

4.4.31.3. Return Values

The function has no return values.

4.4.32. NormAddAckingNode()

4.4.32.1. Synopsis
#i ncl ude <nor mMApi . h>

bool Nor mAddAcki ngNode(Nor nSessi onHandl e sessi onHandl e,
Nor mNodel d nodel d) ;

4.4.32.2. Description

When this function is called, the specified nodel d is added to the list of Nor mNodel d values (i.e., the "acking node"
list) used when NORM sender operation performs positive acknowledgement (ACK) collection for the specified
sessi onHandl e. The optional NORM positive acknowledgement collection occurs when a specified transmission
point (see Nor nSet Vat er mar k()) is reached or for specialized protocol actions such as positively-acknowledged
application-defined commands.

Additionally the special value of nodel d equal to NORM NODE_NONE may be set to force the watermark flushing
process through a full NORM_ROBUST_FACTOR number of rounds regardless of actual acking nodes. Otherwise the
flushing process is terminated when all of the nodes in the acking node list have responded. Setting a "watermark™
and forcing a full flush process with the special NORM NODE_NONE value of nodel d enables the resultant
NORM_TX_WATERMARK_COMPLETED notification to be a indicator with high (but not absolute) assurance that the re-
ceiver set has completed reliable reception of content up through the "watermark" transmission point. This provides
a form of scalable reliable multicast "flow control” for NACK-based operation without requiring explicit positive
acknowledgement from all group members. Note that the use of the NORM_NODE_NONE value may be mixed with
other nodel d for a mix of positive acknowledgement collection from some nodes and a measure of assurance for
the group at large.

4.4.32.3. Return Values

The function returns t r ue upon success and f al se upon failure. The only failure condition is that insufficient
memory resources were available. If a specific nodel d is added more than once, this has no effect.

4.4.33. NormRemoveAckingNode()

4.4.33.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mRenoveAcki ngNode(Nor nSessi onHandl e sessi onHandl e,
Nor mNodel d nodel d) ;

42

NORM Developer's Guide

4.4.33.2. Description

This function deletes the specified nodel d from the list of Nor mNodel d values used when NORM sender operation
performs positive acknowledgement (ACK) collection for the specified sessi onHandl e. Note that if the special
nodel d value "NORM NODE_NONE" has been added to the list, it too must be explicitly removed to change the wa-
termark flushing behavior if desired.

4.4.33.3. Return Values

The function has no return values.

4.4.34. NormGetNextAckingNode()

4.4.34.1. Synopsis
#i ncl ude <nor mApi . h>

Nor mNodel d Nor nGet Next Acki ngNode(Nor nSessi onHandl e sessi on, bool reset = fal se);
4.4.34.2. Description

This function iteratively retrieves the Nor mNodel d values in the "acking node" list maintained by a NORM sender
(see Nor mAddAcki ngNode()) for the given sessi onHandl e. If the optional reset parameter is set to a value of
t rue, the first Nor mNodel d value in the list is returned and subsequent calls to Nor mGet Next Acki ngNode() with
the r eset parameter set to its default f al se value will iteratively return the remaining Nor mNodel d values contained
in the list. A value of NORM_NODE_NONE is returned when the end of the list is reached.

The "acking node" list is populated with application calls to Nor mAddAcki ngNode() or auto-populated if that op-
tional behavior is set for a NormSession. Note that this API does not enable the programmer to check if the
NORM_NODE_NONE value itself is contained in the list. The programmer should keep track of that by other means.

The following code example illustrates how to use this call to iterate through the set of stored Nor mNodel d values
and get the current "acking status™ for each:

Nor mNodel d next Nodel d = Nor nGet Next Acki ngNode(sessi on, true);
whi | e(NORM_NODE_NONE ! = next Nodel d)

{
Nor mAcki ngSt at us acki ngSt at us = Nor nGet Acki ngSt at us(sessi on, next Nodel d) ;

printf("ACKing node id = % u acking status = %\ n", nextNodeld, (int)ackingStatus);
}

As noted below, a good time to check the acking status of the receiver set is after a NORM_TX_WATERMARK_COVPLETED
notification has occurred.

4.4.34.3. Return Values

The function iteratively returns Nor mNodel d values from the given session's local sender "acking node" list. A
value of NORM_NODE_NONE is returned when the end of the list is reached.

4.4.35. NormGetAckingStatus()
4.4.35.1. Synopsis

#i ncl ude <nor mMApi . h>

Nor mAcki ngSt at us Nor nGet Acki ngSt at us(Nor nSessi onHandl e sessi onHandl e,
Nor mNodel d nodel d = NORM NODE_ANY) ;

4.4.35.2. Description

This function queries the status of the watermark flushing process and/or positive acknowledgment collection
initiated by a prior call to Nor nSet Wat er mar k() for the given sessi onHandl e. In general, it is expected that ap-
plications will invoke this function after the corresponding NORM_TX_WATERMARK_COMPLETED event has been posted.

43

NORM Developer's Guide

Setting the default parameter value nodel d = NORM_NODE_ANY returns a "status" indication for the overall process.
Also, individual nodel d values may be queried using the Nor mNodel d values of receivers that were included in
previous calls to Nor mAddAcki ngNode() to populate the sender session's acking node list.

If the flushing/acknowledgment process is being used for application flow control, the sender application may
wish to reset the watermark and flushing process (using Nor mSet Wat er mar k()) if the response indicates that some
nodes have failed to respond. However, note that the flushing/acknowledgment process itself does elicit NACKs
from receivers as needed and is interrupted and reset by any repair response that occurs. Thus, even by the time
the flushing process has completed (and NORM TX_WATERMARK_COMPLETED is posted) once, this is an indication
that the NORM protocol has made a valiant attempt to deliver the content. Resetting the watermark process can
increase robustness, but it may be in vain to repeat this process multiple times when likely network connectivity
has been lost or expected receivers have failed (dropped out, shut down, etc).

4.4.35.3. Return Values

Possible return values include:

NORM_ACK_| NVALI D The given sessi onHandl e is invalid or the given nodel d
is not in the sender's acking list.

NORM_ACK_FAI LURE The positive acknowledgement collection process did
not receive acknowledgment from every listed receiver
(nodel d = NORM_NODE_ANY) or the identified nodel d did
not respond.

NORM_ACK_PENDI NG The flushing process at large has not yet completed
(nodel d = NORM_NODE_ANY) or the given individual
nodel d is still being queried for response.

NORM_ACK_SUCCESS All receivers (nodel d = NORM_NODE_ANY) responded with
positive acknowledgement or the given specific nodel d
did acknowledge.

4.4.36. NormSendCommand()

4.4.36.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nSendCommand(Nor nSessi onHandl e sessi on,

const char* cndBuf f er,
unsi gned i nt cnmdLengt h,
bool robust = fal se);

4.4.36.2. Description

This function enqueues a NORM application-defined command for transmission. The cndBuf f er parameter points
to a buffer containing the application-defined command content that will be contained in the NORM_CVD(APPLI CA-
TI ON) message payload. The cndLengt h indicates the length of this content (in bytes) and MUST be less than or
equal to the segment Lengt h value for the given sessi on (see Nor nst art Sender ()). The NORM command
transmission will be multiplexed with any NORM data transmission. The command is NOT delivered reliably,
but can be optionally transmitted with repetition (once per GRTT) according to the NORM transmit robust factor
value (see Nor nSet TxRobust Fact or ()) for the given session if the r obust parameterissettot r ue. The command
transmission is subject to any congestion control or set rate limits for the NORM session. Once the command has
been transmitted (with repetition if r obust is settot r ue), a NORM_TX_CMD_SENT notification is issued. An applic-
ation can only enqueue a single command at a time (i.e. the NORM_TX_CVD_SENT notification must occur before
another command can be sent). The Nor nCancel Cormand() call is available to terminate command transmission
if needed. Note that if a rapid succession of commands are sent it is possible that the commands may be delivered
to the receivers out-of-order. Also, when repetition is requested (i.e., if robust is set to true) the receiver may
receive duplicate copies of the same command. It is up to the application to provide any needed mechanism for
detecting and/or filtering duplicate command reception.

44

NORM Developer's Guide

The application-defined command feature allows NORM applications to provide some out-of-band (with respect
to reliable data delivery) signaling to support session management or other functions. The reception of these
"atomic" commands is relatively stateless (as compared to reliable data delivery) and thus it is possible for many
senders within a group to send commands without extreme resource burden on receivers (i.e. other participants).
Again, this "light-weight" signaling mechanism may be used to provide ancillary communication for the group.
In the future, an additional API mechanism will be provided to support application-defined positive acknowledgement
requests that could conceivably be used to help guarantee command delivery if desired.

4.4.36.3. Return Values

The function returns t r ue upon success. The function may fail, returning f al se, if the session is not set for sender
operation (see Nor &t ar t Sender ()), the cndLengt h exceeds the configured session segrent Lengt h, or a previously-
enqueued command has not yet been sent.

4.4.37. NormCancelCommand()

4.4.37.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nCancel Conmand(Nor mSessi onHandl e sessi on);
4.4.37.2. Description

This function terminates any pending NORM _CMD(APPLI CATI ON) transmission that was previously initiated with
the Nor nSendConmand() call. Due to the asynchrony of the NORM protocol engine thread and the application, it
is possible that the command may have been already sent but the Nor nCancel Cormand() call will ensure a
NORM_TX_CMD_SENT notification is not issued for that prior command.

The application-defined command feature allows NORM applications to provide some out-of-band (with respect
to reliable data delivery) signaling to support session management or other functions. The reception of these
"atomic" commands is relatively stateless (as compared to reliable data delivery) and thus it is possible for many
senders within a group to send commands without extreme resource burden on receivers (i.e. other participants).
Again, this "light-weight" signaling mechanism may be used to provide ancillary communication for the group.
In the future, an additional APl mechanism will be provided to support application-defined positive acknowledgement
requests that could conceivably be used to help guarantee command delivery if desired.

4.4.37.3. Return Values

The function has not return value.

4.5. NORM Receiver Functions

4.5.1. NormStartReceiver()

4.5.1.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nft art Recei ver (Nor nSessi onHandl e sessi onHandl e,
unsi gned | ong buf f er Space) ;

4.5.1.2. Description

This function initiates the application's participation as a receiver within the NormSession identified by the ses-
si onHandl e parameter. The NORM protocol engine will begin providing the application with receiver-related
Nor mEvent notifications, and, unless Nor nSet Si | ent Recei ver (t r ue) is invoked, respond to senders with appro-
priate protocol messages. The buf f er Space parameter is used to set a limit on the amount of buf f er Space allocated
by the receiver per active NormSender within the session. The appropriate buf f er Space to use is a function of
expected network delay*bandwidth product and packet loss characteristics. A discussion of trade-offs associated
with NORM transmit and receiver buffer space selection is provided later in this document. An insufficient buf -

45

NORM Developer's Guide

f er Space allocation will result in potentially inefficient protocol operation, even though reliable operation may
be maintained. In some cases of a large delay*bandwidth product and/or severe packet loss, a small buf f er Space
allocation (coupled with the lack of explicit flow control in NORM) may result in the receiver "re-syncing" to the
sender, resulting in "outages" in the reliable transmissions from a sender (this is analogous to a TCP connection
timeout failure).

4.5.1.3. Return Values

A value of t r ue is returned upon success and f al se upon failure. The reasons failure may occur include limited
system resources or that the network sockets required for session communication failed to open or properly con-
figure.

4.5.2. NormStopReceiver()

4.5.2.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nSt opRecei ver (Nor mSessi onHandl e sessi onHandl e,
unsi gned i nt gracePeriod = 0);

4.5.2.2. Description

This function ends the application's participation as a receiver in the NormSession specified by the session para-
meter. By default, all receiver-related protocol activity is immediately halted and all receiver-related resources are
freed (except for those which have been specifically retained (see Nor mNodeRet ai n() and Nor mbj ect Ret ai n()).
However, and optional gr acePeri od parameter is provided to allow the receiver an opportunity to inform the
group of its intention. This is applicable when the local receiving NormNode has been designated as an active
congestion control representative (i.e. current limiting receiver (CLR) or potential limiting receiver (PLR)). In this
case, a non-zero gr acePer i od value provides an opportunity for the receiver to respond to the applicable sender(s)
so the sender will not expect further congestion control feedback from this receiver. The gracePeri od integer
value is used as a multiplier with the largest sender GRTT to determine the actual time period for which the receiver
will linger in the group to provide such feedback (i.e. " graceTi me" = (gracePeriod * GRTT)). During this time,
the receiver will not generate any requests for repair or other protocol actions aside from response to applicable
congestion control probes. When the receiver is removed from the current list of receivers in the sender congestion
control probe messages (or the gr acePeri od expires, whichever comes first), the NORM protocol engine will
post a NORM LOCAL_RECEI VER_CLOSED event for the applicable session, and related resources are then freed.

4.5.2.3. Return Values

This function has no return values.

4.5.3. NormSetRxCacheLimit()

4.5.3.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nSet RxCachelLi mi t (Nor nSessi onHandl e sessi onHandl e,
unsi gned short count Max) ;

4.5.3.2. Description

This function sets a limit on the number of outstanding (pending) NormObjects for which a receiver will keep state
on a per-sender basis. Note that the value count Max sets a limit on the maximum consecutive range of objects that
can be pending. The default value (when this function is not called) of count Max is 256. This should be sufficient
for most bulk transfer usage, but if small object sizes (e.g. small NORM OBJECT_DATA messages) are being transferred,
it may be useful to raise this limit in cases of high transmission speeds or large <delay*bandwidth, loss> network
conditions. If the receiver cache limit is set too small (i.e. for high speed or large <delay*bandwidth> operation),
the receiver may not maintain reliable reception or impact session throughput when flow control is enabled (see
Nor mBet FI owCont r ol ()). The maximum allowed value of count Max is 16, 384.

46

NORM Developer's Guide

If this value is changed after Nor nt art Recei ver () has been called, it will only affect newly-detected remote
senders, so this should typically be called before NORM receiver operation is initiated.

4.5.3.3. Return Values

This function has no return value.

4.5.4. NormSetRxSocketBuffer()

4.5.4.1. Synopsis
#i ncl ude <nor mMApi . h>

bool Nor nSet RxSocket Buf f er (Nor nSessi onHandl e sessi onHandl e,
unsi gned i nt buf f er Si ze) ;

4.5.4.2. Description

This function allows the application to set an alternative, non-default buffer size for the UDP socket used by the
specified NORM sessi onHandl e for packet reception. This may be necessary for high speed NORM sessions
where the UDP receive socket buffer becomes a bottleneck when the NORM protocol engine (which is running
as a user-space process) doesn't get to service the receive socket quickly enough resulting in packet loss when the
socket buffer overflows. The buf f er Si ze parameter specifies the socket buffer size in bytes. Different operating
systems and sometimes system configurations allow different ranges of socket buffer sizes to be set. Note that a
call to Nor nSt ar t Recei ver () (or Nor St ar t Sender ()) must have been previously made for this call to succeed
(i.e., the socket must be already open).

4.5.4.3. Return Values

This function returns t r ue upon success and f al se upon failure. Possible reasons for failure include, 1) the specified
session is not valid, 2) that NORM "receiver" (or "sender") operation has not yet been started for the given session,
or 3) an invalid buf f er Si ze specification was given.

4.5.5. NormSetSilentReceiver()

4.5.5.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfet Si | ent Recei ver (Nor mSessi onHandl e sessi onHandl e,
bool sil ent,
I NT32 maxDelay = -1);

4.5.5.2. Description

This function provides the option to configure a NORM receiver application as a "silent receiver”. This mode of
receiver operation dictates that the host does not generate any protocol messages while operating as a receiver
within the specified sessi onHandl e. Setting the si | ent parameter to t r ue enables silent receiver operation while
setting it to f al se results in normal protocol operation where feedback is provided as needed for reliability and
protocol operation. Silent receivers are dependent upon proactive FEC transmission (see Nor nSet Aut oPari ty())
or using repair information requested by other non-silent receivers within the group to achieve reliable transfers.

The optional maxDel ay parameter is most applicable for reception of the NORM OBJECT_STREAMtype. The default
value of maxDel ay = - 1 corresponds to normal operation where source data segments for incompletely-received
FEC coding blocks (or transport objects) are passed to the application only when imposed buffer constraints (either
the NORM_OBJECT_STREAMbuffer size (see Nor nst r eamOpen()) or the FEC receive buffer limit (see Nor nt ar t Re-
cei ver ()) require. Thus, the default behavior (maxDel ay = - 1), causes the receiver to buffer received FEC code
blocks for as long as possible (within buffer constraints as newer data arrives) before allowing the application to
read the data. Hence, the receive latency (delay) can be quite long depending upon buffer size settings, transmission
rate, etc. When the maxDel ay parameter is set to a non-negative value, the value determines the maximum number
of FEC coding blocks (according to a NORM sender's current transmit position) the receiver will cache an incom-
pletely-received FEC block before giving the application the (incomplete) set of received source segments. For

47

NORM Developer's Guide

example, a value of maxDel ay = 0 will provide the receive application with any data from the previous FEC block
as soon as a subsequent FEC block is begun reception. However, this provide no protection against the possibility
of out-of-order delivery of packets by the network. Therefore, if lower latency operation is desired when using silent
receivers, a minimum maxDel ay value of 1 is recommended. For NORM OBJECT_FI LE and NORM OBJECT_DATA,
the only impact of a non-negative maxDel ay value is that previous transport objects will be immediately aborted
when subsequent object begin reception. Thus, it is not usually recommended to apply a non-negative maxDel ay
value when NORM_OBJECT_STREAMIs not being used.

4.5.5.3. Return Values

This function has no return values.

4.5.6. NormSetDefaultUnicastNack()

4.5.6.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nSet Def aul t Uni cast Nack(Nor mBSessi onHandl e sessi onHandl e,
bool enabl e);

4.5.6.2. Description

This function controls the default behavior determining the destination of receiver feedback messages generated
while participating in the session. If the enabl e parameter is true, "unicast NACKing" is enabled for new remote
senders while it is disabled for state equal to false. The NACKing behavior for current remote senders is not affected.
When "unicast NACKing" is disabled (default), NACK messages are sent to the session address (usually a multicast
address) and port, but when "unicast NACKing" is enabled, receiver feedback messages are sent to the unicast
address (and port) based on the source address of sender messages received. For unicast NORM sessions, it is re-
commended that "unicast NACKing" be enabled. Note that receiver feedback messages subject to potential "unicast
NACKIing" include NACK-messages as well as some ACK messages such as congestion control feedback. Explicitly
solicited ACK messages, such as those used to satisfy sender watermark acknowledgement requests (see Nor nSet -
Wat er mar k()) are always unicast to the applicable sender. (TBD - provide API option so that all messages are
multicast.) The default session-wide behavior for unicast NACKing can be overridden via the Nor mNodeSet U-
ni cast Nack() function for individual remote senders.

4.5.6.3. Return Values

This function has no return values.

4.5.7. NormNodeSetUnicastNack()
4.5.7.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mNodeSet Uni cast Nack(Nor nNodeHandl e sender Node,
bool enabl e) ;

4.5.7.2. Description

This function controls the destination address of receiver feedback messages generated in response to a specific
remote NORM sender corresponding to the sender Node parameter. If enabl e ist r ue, "unicast NACKing™ is enabled
while it is disabled for enabl e equal to f al se. See the description of Nor nSet Def aul t Uni cast Nack() for details
on "unicast NACKing" behavior.

4.5.7.3. Return Values

This function has no return values.

48

NORM Developer's Guide

4.5.8. NormSetDefaultSyncPolicy()

4.5.8.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nfSet Def aul t SyncPol i cy(Nor nBessi onHandl e sessi onHandl e,
Nor nSyncPol i cy syncPol i cy) ;

4.5.8.2. Description

This function sets the default "synchronization policy" used when beginning (or restarting) reception of objects
from a remote sender (i.e., "syncing" to the sender) for the given sessi onHandl e. The "synchronization policy"
is the behavior observed by the receiver with regards to what objects it attempts to reliably receive (via transmissions
of Negative Acknowledgements to the sender(s) or group as needed). There are currently two synchronization
policy types defined:

NORM_SYNC_CURRENT Attempt reception of "current”" and new objects only.
(default)

NORM_SYNC_ALL Attempt recovery and reliable reception of all objects
held in sender transmit object cache and newer objects.

The behavior of a receiver using the default NORM_SYNC_CURRENT policy is to attempt reliable reception only for
the first received "current” and newer (with respect to the ordinal NORM object transport identifiers used by the
protocol) objects from a given NORM sender. Additionally, reliable reception is only attempted when receiving
anon-repair NORM_DATA message (or optionally a NORM positive acknowledgement request) from the first forward
error correction (FEC) encoding block of the given object. This somewhat conservative synchronization behavior
helps prevent late-joining (or otherwise "flaky" with respect to group membership) receivers from penalizing
other receivers in the group by causing the sender to "rewind" and transmit older object content to satisfy the late
joiner instead of moving forward with transmission of new content. For large scale, loosely-organized multicast
applications, the NORM_SYNC_CURRENT policy is typically recommended.

The NORM_SYNC_ALL policy allows newly joining receivers much more aggressive behavior as they will immediately
NACK for all objects from the "current™ object backwards through the entire range of objects set by the Nor nSet Rx-
CacheLi mi t () function. This behavior depends upon the sender to issue an appropriate NORM CVD(SQUELCH) re-
sponse (if applicable) to align (i.e. "synchronize™) the new receiver with its current transmit object cache (similar
to a "repair window"). This synchronization behavior may be useful for unicast uses of NORM or other applications
where the group membership is more carefully managed and it is important that all content (including older content)
is received. Note that the sender transmit cache bounds (see Nor nSet TxCacheBounds()) and the receiver receive
cache limit (see Nor nBet RxCachelLi ni t ()) settings will limit how far back onto the sender transmission history
that transmitted objects can be reliably recovered from the "current™ transmission point when the receiver begins
reception.

When this function is not invoked, the NORM_SYNC_CURRENT behavior is observed as the default receiver synchron-
ization policy. This call SHOULD be made before Nor nt ar t Recei ver () is called.

4.5.8.3. Return Values

This function has no return values.

4.5.9. NormSetDefaultNackingMode()

4.5.9.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfSet Def aul t Nacki ngibde(Nor mBSessi onHandl e sessi onHandl e,
Nor mNacki ngvbde nacki nghbde) ;

49

NORM Developer's Guide

4.5.9.2. Description

This function sets the default "nacking mode" used when receiving objects for the given sessi onHandl e. This
allows the receiver application some control of its degree of participation in the repair process. By limiting receivers
to only request repair of objects in which they are really interested in receiving, some overall savings in unnecessary
network loading might be realized for some applications and users. Available nacking modes include:

NORM_NACK_NONE Do not transmit any repair requests for the newly re-
ceived object.

NORM_NACK_| NFO_ONLY Transmit repair requests for NORM_I NFO content only as
needed.

NORM_NACK_ NORMAL Transmit repair requests for entire object as needed.

This function specifies the default behavior with respect to any new sender or object. This default behavior may
be overridden for specific sender nodes or specific object using Nor mNodeSet Nacki ngMbde() Or Nor mObj ect Set -
Nacki nghbde(), respectively. The receiver application’'s use of NORM_NACK_NONE essentially disables a guarantee
of reliable reception, although the receiver may still take advantage of sender repair transmissions in response to
other receivers' requests. When the sender provides, NORM INFO content for transmitted objects, the
NORM_NACK_I NFO_ONLY mode may allows the receiver to reliably receive object context information from which
it may choose to "upgrade" its nacki nghbde for the specific object via the Nor mObj ect Set Nacki nghbde() call.
Similarly, the receiver may changes its default nacki ngMbde with respect to specific senders via the Nor mNodeSet -
Nacki nghbde() call. The default "default nacki ngMbde™ when this call is not made is NORM_NACK_NORMAL.

4.5.9.3. Return Values

This function has no return values.

4.5.10. NormNodeSetNackingMode()
4.5.10.1. Synopsis

#i ncl ude <nor mApi . h>

voi d Nor mNodeSet Nacki ngMode(Nor mMNodeHandl e nodeHandl e,
Nor mNacki ngMbde nacki nghbde) ;

4.5.10.2. Description

This function sets the default "nacking mode" used for receiving new objects from a specific sender as identified
by the nodeHandl e parameter. This overrides the default nacki ngMode set for the receive session. See Nor net -
Def aul t Nacki ngMode() for a description of possible nacki ngMbde parameter values and other related information.

4.5.10.3. Return Values

This function has no return values.

4.5.11. NormObjectSetNackingMode()

4.5.11.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mObj ect Set Nacki nghMbde(Nor nCbj ect Handl e obj ect Handl e,
Nor mNacki ngMbde nacki nghbde) ;

4.5.11.2. Description

This function sets the "nacking mode" used for receiving a specific transport object as identified by the ob-
j ect Handl e parameter. This overrides the default nacking mode set for the applicable sender node. See Nor net -
Def aul t Nacki nghbde() for a description of possible nacki ngMbde parameter values and other related information.

50

NORM Developer's Guide

4.5.11.3. Return Values

This function has no return values.
4.5.12. NormSetDefaultRepairBoundary()

4.5.12.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nBSet Def aul t Repai r Boundar y(Nor nSessi onHandl e sessi onHandl e,
Nor nRepai r Boundary repai r Boundary) ;

4.5.12.2. Description

This function allows the receiver application to customize, for a given sessi onHandl e, at what points the receiver
initiates the NORM NACK repair process during protocol operation. Normally, the NORM receiver initiates
NACK:Iing for repairs at the FEC code block and transport object boundaries. For smaller block sizes, the NACK
repair process is often/quickly initiated and the repair of an object will occur, as needed, during the transmission
of the object. This default operation corresponds to r epai r Boundar y equal to NORM BOUNDARY_BLOCK. Using this
function, the application may alternatively, setting r epai r Boundar y equal to NORM_BOUNDARY_OBJECT, cause the
protocol to defer NACK process initiation until the current transport object has been completely transmitted.

4.5.12.3. Return Values

This function has no return values.

4.5.13. NormNodeSetRepairBoundary/()

4.5.13.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mNodeSet Repai r Boundar y(Nor mNodeHandl e nodeHandl e,
Nor nRepai r Boundary repair Boundary) ;

4.5.13.2. Description

This function allows the receiver application to customize, for the specific remote sender referenced by the node-
Handl e parameter, at what points the receiver initiates the NORM NACK repair process during protocol operation.
See the description of Nor nSet Def aul t Repai r Boundar y() for further details on the impact of setting the NORM
receiver repair boundary and possible values for the r epai r Boundar y parameter.

4.5.13.3. Return Values

This function has no return values.
4.5.14. NormSetDefaultRxRobustFactor()

4.5.14.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nfSet Def aul t RxRobust Fact or (Nor nSessi onHandl e sessi onHandl e,
i nt r xRobust Fact or) ;

4.5.14.2. Description

This routine controls how persistently NORM receivers will maintain state for sender(s) and continue to request
repairs from the sender(s) even when packet reception has ceased. The r xRobust Fact or value determines how
many times a NORM receiver will self-initiate NACKing (repair requests) upon cessation of packet reception from
a sender. The default value is 20. Setting r xRobust Fact or to - 1 will make the NORM receiver infinitely persistent
(i.e., it will continue to NACK indefinitely as long as it is missing data content). It is important to note that the

51

NORM Developer's Guide

Nor mSet TxRobust Fact or () also affects receiver operation in setting the time interval that is used to gauge that
sender packet transmission has ceased (i.e., the sender inactivity timeout). This "timeout" interval is a equal of (2
* GRTT * txRobust Fact or). Thus the overall timeout before a NORM receiver quits NACKing is (r xRobust Fact or
* 2 * GRIT * txRobustFactor).

The Nor mNodeSet RxRobust Fact or () function can be used to control this behavior on a per-sender basis. When
a new remote sender is detected, the default r xRobust Fact or set here is used. Again, the default value is 20.

4.5.14.3. Return Values

This function has no return values.

4.5.15. NormNodeSetRxRobustFactor()

4.5.15.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mNodeSet RxRobust Fact or (Nor mMNodeHandl e nodeHandl e,
int r xRobust Fact or) ;

4.5.15.2. Description

This routine sets the r xRobust Fact or as described in Nor nSet Def aul t RxRobust Fact or () for an individual remote
sender identified by the nodeHandl e parameter. See the description of Nor nSet Def aul t RxRobust Fact or () for
details

4.5.15.3. Return Values

This function has no return values.
4.5.16. NormStreamRead()

4.5.16.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nft r eanRead(Nor nObj ect Handl e streantandl e,
char* buf f er
unsi gned int* nunByt es) ;

4.5.16.2. Description

This function can be used by the receiver application to read any available data from an incoming NORM stream.
NORM receiver applications "learn” of available NORM streams via NORM_RX_OBJECT_NeEwnotification events.
The st r eanHandl e parameter here must correspond to a valid Nor mObj ect Handl e value provided during such a
prior NORM_RX_OBJECT_NEwnotification. The buf f er parameter must be a pointer to an array where the received
data can be stored of a length as referenced by the nunByt es pointer. On successful completion, the nunByt es
storage will be modified to indicate the actual number of bytes copied into the provided buf f er . If the nunByt es
storage is modified to a zero value, this indicates that no stream data was currently available for reading.

Note that Nor nSt r eanRead() is never a blocking call and only returns failure (f al se) when a break in the integrity
of the received stream occurs. The NORM_RX_OBJECT_UPDATE provides an indication to when there is stream data
available for reading. When such notification occurs, the application should repeatedly read from the stream until
the nunByt es storage is set to zero, even if a f al se value is returned. Additional NORM_RX_OBJECT_UPDATE noti-
fications might not be posted until the application has read all available data.

4.5.16.3. Return Values

This function normally returns a value of t r ue. However, if a break in the integrity of the reliable received stream
occurs (or the stream has been ended by the sender), a value of f al se is returned to indicate the break. Unless the
stream has been ended (and the receiver application will receive NORM_RX_OBJECT_COVPLETED notification for the

52

NORM Developer's Guide

stream in that case), the application may continue to read from the stream as the NORM protocol will automatically
"resync" to streams, even if network conditions are sufficiently poor that breaks in reliability occur. If such a
"break" and "resync" occurs, the application may be able to leverage other NORM API calls such as Nor nSt r eam
SeekMsgSt art () or Nor nSt r eanGet ReadO f set () if needed to recover its alignment with received stream content.
This depends upon the nature of the application and its stream content.

4.5.17. NormStreamSeekMsgStart()

4.5.17.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nft reanSeekMsgSt art (Nor mbj ect Handl e streantHandl e) ;
4.5.17.2. Description

This function advances the read offset of the receive stream referenced by the st r eanHandl e parameter to align
with the next available message boundary. Message boundaries are defined by the sender application using the
Nor st r eamar kEon() call. Note that any received data prior to the next message boundary is discarded by the
NORM protocol engine and is not available to the application (i.e., there is currently no "rewind" function for a
NORM stream). Also note this call cannot be used to skip messages. Once a valid message boundary is found, the
application must read from the stream using Nor nst r eanRead() to further advance the read offset. The current
offset (in bytes) for the stream can be retrieved via Nor nSt r eanGet ReadOf f set () .

4.5.17.3. Return Values

This function returns a value of t r ue when start-of-message is found. The next call to Nor nSt r eanRead() will
retrieve data aligned with the message start. If no new message boundary is found in the buffered receive data for
the stream, the function returns a value of f al se. In this case, the application should defer repeating a call to this
function until a subsequent NORM _RX_OBJECT_UPDATE notification is posted.

4.5.18. NormStreamGetReadOffset()

4.5.18.1. Synopsis
#i ncl ude <nor mApi . h>

unsi gned | ong Nor nSt r eanmCGet ReadO f set (Nor mObj ect Handl e st reanHandl e) ;
4.5.18.2. Description

This function retrieves the current read offset value for the receive stream indicated by the st r eantHandl e parameter.
Note that for very long-lived streams, this value may wrap. Thus, in general, applications should not be highly
dependent upon the stream offset, but this feature may be valuable for certain applications which associate some
application context with stream position.

4.5.18.3. Return Values

This function returns the current read offset in bytes. The return value is undefined for sender streams. There is
no error result.

4.6. NORM Object Functions

The functions described in this section may be used for sender or receiver purposes to manage transmission and
reception of NORM transport objects. In most cases, the receiver will be the typical user of these functions to retrieve
additional information on newly-received objects. All of these functions require a valid Nor nObj ect Handl e argument
which specifies the applicable object. Note that Nor mObj ect Handl e values obtained from a Nor nEvent notification
may be considered valid only until a subsequent call to Nor nGet Next Event (), unless explicitly retained by the
application (see Nor mbj ect Ret ai n()). Nor mObj ect Handl e values obtained as a result of Nor nFi | eEnqueue(),
Nor mDat aEnqueue(), Or NornstreamOpen() calls can be considered valid only until a corresponding

53

NORM Developer's Guide

NORM_TX_OBJECT_PURGED natification is posted or the object is dequeued using Nor nObj ect Cancel (), unless,
again, otherwise explicitly retained (see Nor nbj ect Ret ai n()).

4.6.1. NormObjectGetType()

4.6.1.1. Synopsis
#i ncl ude <nor mApi . h>
Nor mObj ect Type Nor nbj ect Get Type(Nor nObj ect Handl e obj ect Handl e) ;

4.6.1.2. Description

This function can be used to determine the object type ((NORM_OBJECT_DAT, NORM OBJECT_FI LE, or NORM _OB-
JECT_STREAM for the NORM transport object identified by the obj ect Handl e parameter. The obj ect Handl e
must refer to a current, valid transport object.

4.6.1.3. Return Values

This function returns the NORM object type. Valid NORM object types include NORM OBJECT_DATA, NORM_OB-
JECT_FI LE, Or NORM OBJECT_STREAM A type value of NORM OBJECT_NONE will be returned for an obj ect Handl e
value of NORM_OBJECT_| NVALI D.

4.6.2. NormObjectHasInfo()

4.6.2.1. Synopsis
#i ncl ude <nor mApi . h>
bool Nor mbj ect Hasl nf o(Nor nbj ect Handl e obj ect Handl e) ;

4.6.2.2. Description

This function can be used to determine if the sender has associated any NORM | NFOcontent with the transport object
specified by the obj ect Handl e parameter. This can even be used before the NORM | NFOcontent is delivered to the
receiver and a NORM_RX_OBJECT_| NFOnotification is posted.

4.6.2.3. Return Values

A value of true is returned if NORM_ | NFOis (or will be) available for the specified transport object. A value of
fal se is returned otherwise.

4.6.3. NormObjectGetinfoLength()

4.6.3.1. Synopsis
#i ncl ude <nor mApi . h>
unsi gned short Nor nbj ect Get | nf oLengt h(Nor nObj ect Handl e obj ect Handl e) ;

4.6.3.2. Description

This function can be used to determine the length of currently available NORM | NFO content (if any) associated
with the transport object referenced by the obj ect Handl e parameter.

4.6.3.3. Return Values

The length of the NORM_I NFO content, in bytes, of currently available for the specified transport object is returned.
A value of 0 is returned if no NORM_I NFO content is currently available or associated with the object.

54

NORM Developer's Guide

4.6.4. NormObjectGetinfo()

4.6.4.1. Synopsis

#i ncl ude <nor mMApi . h>

unsi gned short Nor nbj ect Get | nf o(Nor nCbj ect Handl e obj ect Handl e,
char* buf fer,
unsi gned short buf ferlLen);

4.6.4.2. Description

This function copies any NORM | NFOcontent associated (by the sender application) with the transport object specified
by obj ect Handl e into the provided memory space referenced by the buffer parameter. The buf f er Len parameter
indicates the length of the buffer space in bytes. If the provided buf f er Len is less than the actual NORM | NFO
length, a partial copy will occur. The actual length of NORM | NFOcontent available for the specified object is returned.
However, note that until a NORM _RX_OBJECT_| NFOnotification is posted to the receive application, no NORM | NFO
content is available and a zero result will be returned, even if NORM | NFO content may be subsequently available.
The Nor mbj ect Hasl nf o() call can be used to determine if any NORM | NFO content will ever be available for a
specified transport object (i.e., determine if the sender has associated any NORM | NFOwith the object in question).

4.6.4.3. Return Values

The actual length of currently available NORM I NFO content for the specified transport object is returned. This
function can be used to determine the length of NORM | NFOcontent for the object even if a NULL buffer value and
zero buf f er Len is provided. A zero value is returned if NORM | NFO content has not yet been received (or is non-
existent) for the specified object.

4.6.5. NormObjectGetSize()

4.6.5.1. Synopsis

#i ncl ude <nor mMApi . h>

Nor n5i ze Nor nObj ect Get Si ze(Nor nObj ect Handl e obj ect Handl e) ;
4.6.5.2. Description

This function can be used to determine the size (in bytes) of the transport object specified by the obj ect Handl e
parameter. NORM can support large object sizes for the NORM OBJECT_FI LE type, so typically the NORM library
is built with any necessary, related macros defined such that operating system large file support is enabled (e.g.,
"#define _FILE _OFFSET_BI TS 64" or equivalent). The Nor nSi ze type is defined accordingly, so the application
should be built with the same large file support configuration.

For objects of type NORM OBJECT_STREAM the size returned here corresponds to the stream buffer size set by the
sender application when opening the referenced stream object.

4.6.5.3. Return Values

A size of the data content of the specified object, in bytes, is returned. Note that it may be possible that some objects
have zero data content, but do have NORM_| NFO content available.

4.6.6. NormObjectGetBytesPending()
4.6.6.1. Synopsis
#i ncl ude <nor mApi . h>

Nor n5i ze Nor mObj ect Get Byt esPendi ng(Nor mObj ect Handl e obj ect Handl e) ;

55

NORM Developer's Guide

4.6.6.2. Description

This function can be used to determine the progress of reception of the NORM transport object identified by the
obj ect Hand| e parameter. This function indicates the number of bytes that are pending reception (l.e., when the
object is completely received, "bytes pending" will equal ZERO). This function is not necessarily applicable to
objects of type NORM OBJECT_STREAMWhich do not have a finite size. Note it is possible that this function might
also be useful to query the "transmit pending" status of sender objects, but it does not account for pending FEC
repair transmissions and thus may not produce useful results for this purpose.

4.6.6.3. Return Values

A number of object source data bytes pending reception (or transmission) is returned.

4.6.7. NormObjectCancel()

4.6.7.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mObj ect Cancel (Nor mObj ect Handl e obj ect Handl e) ;
4.6.7.2. Description

This function immediately cancels the transmission of a local sender transport object or the reception of a specified
object from a remote sender as specified by the obj ect Handl e parameter. The obj ect Handl e must refer to a
currently valid NORM transport object. Any resources used by the transport object in question are immediately
freed unless the object has been otherwise retained by the application via the Nor mbj ect Ret ai n() call. Unless
the application has retained the object in such fashion, the object in question should be considered invalid and the
application must not again reference the obj ect Handl e after this call is made.

If the canceled object is a sender object not completely received by participating receivers, the receivers will be
informed of the object's cancellation via the NORM protocol NoORM_ CVD(SQUELCH) message in response to any
NACKSs requesting repair or retransmission of the applicable object. In the case of receive objects, the NORM re-
ceiver will not make further requests for repair of the indicated object, but furthermore, will acknowledge the object
as completed with respect to any associated positive acknowledgement requests (see Nor nSet Wt er mar k()).

4.6.7.3. Return Values

This function has no return value.

4.6.8. NormObjectRetain()

4.6.8.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor nbj ect Ret ai n(Nor mObj ect Handl e obj ect Handl e) ;
4.6.8.2. Description

This function "retains" the obj ect Handl e and any state associated with it for further use by the application even
when the NORM protocol engine may no longer require access to the associated transport object. Normally, the
application is guaranteed that a given Nor mbj ect Handl e is valid only while it is being actively transported by
NORM (i.e., for sender objects, from the time an object is created by the application until it is canceled by the
application or purged (see the NORM TX_OBJECT_PURGED notification) by the protocol engine, or, for receiver objects,
from the time of the object's NORM_RX_OBJECT_Newnotification until its reception is canceled by the application
or a NORM_RX_OBJECT_COMPLETED Or NORM_RX_OBJECT_ABORTED nhotification is posted). Note that an application
may refer to a given object after any related notification until the application makes a subsequent call to Nor nGet -
Next Event () .

56

NORM Developer's Guide

When the application makes a call to Nor mbj ect Ret ai n() for a given obj ect Handl e, the application may use
that obj ect Handl e value in any NORM API calls until the application makes a call to Nor mObj ect Rel ease() for
the given object. Note that the application MUST make a corresponding call to Nor nbj ect Rel ease() for each
call it has made to Nor mbj ect Ret ai n() in order to free any system resources (i.e., memory) used by that object.
Also note that retaining a receive object also automatically retains any state associated with the Nor mNodeHandl e
corresponding to the remote sender of that receive object so that the application may use NORM node API calls
for the value returned by Nor mObj ect Get Sender () as needed.

4.6.8.3. Return Values

This function has no return value.

4.6.9. NormObjectRelease()

4.6.9.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor nObj ect Rel ease(Nor nObj ect Handl e obj ect Handl e) ;
4.6.9.2. Description

This function complements the Nor mObj ect Ret ai n() call by immediately freeing any resources associated with
the given obj ect Handl e, assuming the underlying NORM protocol engine no longer requires access to the corres-
ponding transport object. Note the NORM protocol engine retains/releases state for associated objects for its own
needs and thus it is very unsafe for an application to call Nor mObj ect Rel ease() for an obj ect Handl e for which
it has not previously explicitly retained via Nor mbj ect Ret ai n() .

4.6.9.3. Return Values

This function has no return value.

4.6.10. NormFileGetName()

4.6.10.1. Synopsis
#i ncl ude <nor mMApi . h>
bool Nor nFi | eGet Nanme(Nor mObj ect Handl e obj ect Handl e,

char * naneBuf f er,
unsi gned i nt buf f er Len) ;

4.6.10.2. Description

This function copies the name, as a NULL-terminated string, of the file object specified by the obj ect Handl e
parameter into the nanmeBuf f er of length buf f er Len bytes provided by the application. The obj ect Handl e para-
meter must refer to a valid Nor moj ect Handl e for an object of type NORM OBJECT_FI LE. If the actual name is
longer than the provided buf f er Len, a partial copy will occur. Note that the file name consists of the entire path
name of the specified file object and the application should give consideration to operating system file path lengths
when providing the nanmeBuf f er .

4.6.10.3. Return Values

This function returns t rue upon success and f al se upon failure. Possible failure conditions include the ob-
j ect Handl e does not refer to an object of type NORM OBJECT_FI LE.

4.6.11. NormFileRename()

4.6.11.1. Synopsis

#i ncl ude <nor mApi . h>

57

NORM Developer's Guide

bool Nor nFi | eRename(Nor mbj ect Handl e obj ect Handl e,
const char* fil eNane);

4.6.11.2. Description

This function renames the file used to store content for the NORM OBJECT_FI LE transport object specified by the
obj ect Handl e parameter. This allows receiver applications to rename (or move) received files as needed. NORM
uses temporary file names for received files until the application explicitly renames the file. For example, sender
applications may choose to use the NORM | NFO content associated with a file object to provide name and/or typing
information to receivers. The fi | eNae parameter must be a NULL-terminated string which should specify the full
desired path name to be used. NORM will attempt to create sub-directories as needed to satisfy the request. Note
that existing files of the same name may be overwritten.

4.6.11.3. Return Values

This function returns true upon success and false upon failure. Possible failure conditions include the case where
the obj ect Handl e does not refer to an object of type NORM OBJECT_FI LE and where NORM was unable to suc-
cessfully create any needed directories and/or the file itself.

4.6.12. NormDataAccessData()

4.6.12.1. Synopsis
#i ncl ude <nor mMApi . h>
const char* Nor nDat aAccessDat a(Nor nObj ect Handl e obj ect Handl €) ;

4.6.12.2. Description

This function allows the application to access the data storage area associated with a transport object of type
NORM_OBJECT_DATA. For example, the application may use this function to copy the received data content for its
own use. Alternatively, the application may establish "ownership” for the allocated memory space using the
Nor nDat aDet achDat a() function if it is desired to avoid the copy.

If the object specified by the obj ect Handl e parameter has no data content (or is not of type NORM _OBJECT_DATA),
a NULL value may be returned. The application MUST NOT attempt to modify the memory space used by
NORM _OBJECT_DATA objects during the time an associated obj ect Handl e is valid. The length of data storage area
can be determined with a call to Nor mbj ect Get Si ze() for the same obj ect Handl e value.

4.6.12.3. Return Values

This function returns a pointer to the data storage area for the specified transport object. A NULL value may be
returned if the object has no associated data content or is not of type NORM _OBJECT_DATA.

4.6.13. NormDataDetachData()

4.6.13.1. Synopsis
#i ncl ude <nor mMApi . h>

char* Nor nDat aDet achDat a(Nor nObj ect Handl e obj ect Handl e) ;
4.6.13.2. Description

This function allows the application to disassociate data storage allocated by the NORM protocol engine for a receive
object from the NORM_OBJECT_DATA transport object specified by the obj ect Handl e parameter. It is important that
this function is called after the NORM protocol engine has indicated it is finished with the data object (i.e., after
a NORM_TX_OBJECT_PURGED, NORM_RX_OBJECT_COMPLETED, or NORM_RX_OBJECT_ABCRTED notification event). But
the application must call Nor nDat aDet achDat a() before a call is made to Nor mObj ect Cancel () Or Nor mbj ect Re-
I ease() forthe object if it plans to access the data content afterwards. Otherwise, the NORM protocol engine will
free the applicable memory space when the associated NORM OBJECT_DATA transport object is deleted and the ap-
plication will be unable to access the received data unless it has previously copied the content.

58

NORM Developer's Guide

Once the application has used this call to "detach” the data content, it is the application's responsibility to sub-
sequently free the data storage space as needed.

4.6.13.3. Return Values

This function returns a pointer to the data storage area for the specified transport object. A NULL value may be re-
turned if the object has no associated data content or is not of type NORM_OBJECT_DATA.

4.6.14. NormObjectGetSender()

4.6.14.1. Synopsis
#i ncl ude <nor mMApi . h>

Nor mNodeHandl e Nor nbj ect Get Sender (Nor mObj ect Handl e obj ect Handl e) ;
4.6.14.2. Description

This function retrieves the Nor mNodeHandl e corresponding to the remote sender of the transport object associated
with the given obj ect Handl e parameter. Note that the returned Nor mNodeHand! e value is only valid for the same
period that the obj ect Handl e is valid. The returned Nor mNodeHandl e may optionally be retained for further use
by the application using the Nor mNodeRet ai n() function call. The returned value can be used in the NORM Node
Functions described later in this document.

4.6.14.3. Return Values

This function returns the Nor mNodeHandl e corresponding to the remote sender of the transport object associated
with the given obj ect Handl e parameter. A value of NORM_NODE_| NVALI Dis returned if the specified obj ect Handl e
references a locally originated, sender object.

4.7. NORM Node Functions

The functions described in this section may be used for NORM sender or receiver (most typically receiver) purposes
to retrieve additional information about a remote NormNode, given a valid Nor mNodeHandl e. Note that, unless
specifically retained (see Nor mNodeRet ai n()), a Nor nNodeHandl e provided in a Nor nEvent notification should
be considered valid only until a subsequent call to Nor nGet Next Event () is made. Nor mNodeHand| e values retrieved
using Nor mbj ect Get Sender () can be considered valid for the same period of time as the corresponding Nor -
j ect Handl e is valid.

4.7.1. NormNodeGetld()

4.7.1.1. Synopsis

#i ncl ude <nor mApi . h>

Nor mNodel d Nor nNodeGet | d(Nor mMNodeHandl e nodeHandl e) ;
4.7.1.2. Description

This function retrieves the Nor mNodel d identifier for the remote participant referenced by the given nodeHandl e
value. The Nor nNodel d is a 32-bit value used within the NORM protocol to uniquely identify participants within
a NORM session. The participants identifiers are assigned by the application or derived (by the NORM API code)
from the host computers default IP address.

4.7.1.3. Return Values

This function returns the Nor mNodel d value associated with the specified nodeHand! e. In the case nodeHandl e is
equal to NORM_NODE_I NVALI D, the return value will be NORM_NODE_NONE.

59

NORM Developer's Guide

4.7.2. NormNodeGetAddress()

4.7.2.1. Synopsis

#i ncl ude <nor mMApi . h>

bool Nor mNodeGet Addr ess(Nor mNodeHand! e nodeHandl e,
char* addr Buf f er,
unsi gned int* buf f er Len,
unsi gned short* port = NULL);

4.7.2.2. Description

This function retrieves the current network source address detected for packets received from remote NORM
sender referenced by the nodeHandl e parameter. The addr Buf f er must be a pointer to storage of buf f er Len bytes
in length in which the referenced sender node's address will be returned. Optionally, the remote sender source port
number (see Nor nSet TxPort ()) is also returned if the optional port pointer to storage parameter is provided in
the call. Note that in the case of Network Address Translation (NAT) or other firewall activities, the source address
detected by the NORM receiver may not be the original address of the original NORM sender.

4.7.2.3. Return Values

A value of t r ue is returned upon success and f al se upon failure. An invalid nodeHand! e parameter value would
lead to such failure.

4.7.3. NormNodeGetGrtt()

4.7.3.1. Synopsis
#i ncl ude <nor mApi . h>

doubl e Nor mNodeGet | d(Nor nNodeHandl e nodeHandl e) ;
4.7.3.2. Description

This function retrieves the advertised estimate of group round-trip timing (GRTT) for the remote sender referenced
by the given nodeHandl e value. Newly-starting senders that have been participating as a receiver within a group
may wish to use this function to provide a more accurate startup estimate of GRTT (see Nor nSet G tt Est i mat ())
prior to a call to Nor St ar t Sender () . Applications may use this information for other purpose as well. Note that
the NORM_GRTT_UPDATED event is posted (see Nor nGet Next Event ()) by the NORM protocol engine to indicate
when changes in the local sender or remote senders' GRTT estimate occurs.

4.7.3.3. Return Values

This function returns the remote sender's advertised GRTT estimate in units of seconds. A value of - 1. 0 is returned
upon failure. An invalid nodeHandl e parameter value will lead to such failure.

4.7.4. NormNodeGetCommand()

4.7.4.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor mMNodeGet Commrand(Nor mNodeHandl e nodeHandl e,
char * buffer,
unsigned int* buflen);

4.7.4.2. Description

This function retrieves the content of an application-defined command that was received from a remote sender
associated with the given nodeHand! e. This call should be made in response to the NORM_RX_CVD_NEWNotification.
This notification is issued for each command received. However the application may use this call to poll for received
commands if desired. Additionally, the received command length can be "queried" by setting the value referenced

60

NORM Developer's Guide

by the buf I en parameter to ZERO. Upon return, this value referenced by the buf | en parameter is adjusted to reflect
the command length. Then a subsequent call to Nor mNodeGet Conmand() can be made with an appropriately-sized
buffer to retrieve the received command content. The command size will be less than or equal to the NORM segment
size configured for the given remote sender.

Note that if a rapid succession of commands are sent it is possible that the commands may be delivered to the re-
ceivers out-of-order. Also, when repetition is requested (i.e., if robust is set to t r ue) the receiver may receive
duplicate copies of the same command. It is up to the application to provide any needed mechanism for detecting
and/or filtering duplicate command reception.

4.7.4.3. Return Values

This function returns t r ue upon successful retrieval of command content. A return value of f al se indicates that
either no command was available or the provided buffer size (buf | en parameter) was inadequate. The value refer-
enced by the buf | en parameter is adjusted to indicate the actual command length (in bytes) upon return.

4.7.5. NormNodeFreeBuffers()

4.7.5.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mNodeFr eeBuf f er s(Nor mMNodeHandl e nodeHandl e) ;
4.7.5.2. Description

This function releases memory resources that were allocated for a remote sender. For example, the receiver applic-
ation may wish to free memory resources when receiving a NORM_REMOTE_SENDER_| NACTI VE natification for a
given remote sender when multiple senders may be providing content. The NORM protocol engine allocates
memory for reliable transport buffering on a per sender basis according to the limit set in the Nor nSt ar t Recei ver ()
call. These buffering resources comprise the majority of the state allocated for a given remote sender. For NORM
applications with possibly multiple senders active at different times, this function can be used to manage to amount
of memory allocated for reliable reception. If a sender becomes "active™ again after a call to Nor nNodeFr eeBuf -
fers(), new memory resources will be allocated. Note that state for any pending (uncompleted) objects will be
dropped when this function is called and the receiver may request retransmission and repair of content if the sender
once again becomes "active". The application SHOULD call Nor mObj ect Cancel () for any pending objects before
calling Nor mNodeFr eeBuf fers() if it wishes to never receive those pending objects. Alternatively, a call to
Nor mNodeDel et e() will completely eliminate all state for a given remote sender and, if that sender becomes
"active" again, it will be treated as a completely new sender.

4.7.5.3. Return Values

This function has no return value.

4.7.6. NormNodeDelete()

4.7.6.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mNodeDel et e(Nor mMNodeHandl e nodeHandl e) ;
4.7.6.2. Description

This function can be used by a NORM receiver application to completely remove the state associated with a remote
sender for the given nodeHandl e. For example, when a NORM_REMOTE_SENDER_| NACTI VE notification occurs for
a given sender, the application may wish to completely free all associated resources. Note this is distinct from the
Nor mNodeFr eeBuf f er s() call where only the buffering resources are freed and other state pertaining to the sender
is kept. If the deleted sender again becomes "active", it will be treated as a brand new sender. Unless explicitly
retained with a call to Nor mNodeRet ai n(), the nodeHand! e should be considered invalid after this call is made.

61

NORM Developer's Guide

Additionally, any NormObjectHandle values for pending objects from this sender are also invalidated (unless
otherwise retained), although NORM _RX_OBJECT_ABORTED notifications may be issued for those pending objects.

4.7.6.3. Return Values

This function has no return value.

4.7.7. NormNodeRetain()

4.7.7.1. Synopsis
#i ncl ude <nor mMApi . h>

voi d Nor mNodeRet ai n(Nor mNodeHandl e nodeHandl e) ;
4.7.7.2. Description

In the same manner as the Nor nObj ect Ret ai n() function, this function allows the application to retain state asso-
ciated with a given nodeHand! e value even when the underlying NORM protocol engine might normally free the
associated state and thus invalidate the Nor mNodeHandl e. If the application uses this function, it must make a
corresponding call to Nor mNodeRel ease() when finished with the node information to avoid a memory leak con-
dition. Nor mNodeHandl e values (unless retained) are valid from the time of a NORM REMOTE_SENDER _NEWnNotification
until a complimentary NORM_REMOTE_SENDER_PURGED notification. During that interval, the application will receive
NCRM REMOTE_SENDER_ACTI VE and NORM_REMOTE_SENDER | NACTI VE notifications according to the sender's message
transmission activity within the session.

It is important to note that, if the NORM protocol engine posts a NORM_REMOTE_SENDER_PURGED notification for
a given Nor mNodeHandl e, the NORM protocol engine could possibly, subsequently establish a new, different
Nor mNodeHandl e value for the same remote sender (i.e., one of equivalent Nor mNodel d) if it again becomes active
in the session. A new Nor mNodeHand! e may likely be established even if the application has retained the previous
Nor mNodeHandl e value. Therefore, to the application, it might appear that two different senders with the same
Nor mNodel d are participating if these notifications are not carefully monitored. This behavior is contingent upon
how the application has configured the NORM protocol engine to manage resources when there is potential for a
large number of remote senders within a session (related APIs are TBD). For example, the application may wish
to control which specific remote senders for which it keeps state (or limit the memory resources used for remote
sender state, etc) and the NORM API may be extended in the future to control this behavior.

4.7.7.3. Return Values

This function has no return value.

4.7.8. NormNodeRelease()

4.7.8.1. Synopsis
#i ncl ude <nor mApi . h>

voi d Nor mNodeRel ease(Nor mMNodeHandl e nodeHandl e) ;
4.7.8.2. Description

In complement to the Nor mNodeRet ai n() function, this API call releases the specified nodeHandl e so that the
NORM protocol engine may free associated resources as needed. Once this call is made, the application should
no longer reference the specified Nor mNodeHandl e, unless it is still valid.

4.7.8.3. Return Values

This function has no return value.

62

NORM Developer's Guide

4.8. NORM Debugging Functions

This section describes some additional function calls that are available to set debugging output options and control
other aspects of the NORM implementation.

4.8.1. NormSetDebugLevel()

4.8.1.1. Synopsis
#i ncl ude <nor mMApi . h>
voi d Nor nSet DebugLevel (unsi gned int |evel);

4.8.1.2. Description

This function controls the verbosity of NORM debugging output. Higher values of level result in more detailed
output. The highest level of debugging is 12. The debug output consists of text written to STDOUT by default but
may be directed to a log file using the Nor mopenDebugLog() function.

4.8.1.3. Return Values

This function has no return value.

4.8.2. NormOpenDebuglLog()

4.8.2.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor mOpenDebuglLog(Nor m nst anceHandl e i nstance, const char* fil eNane);
4.8.2.2. Description

This function allows NORM debug output to be directed to a file instead of the default STDERR.
4.8.2.3. Return Values

The function returns t r ue on success. If the specified file cannot be opened a value of f al se is returned.

4.8.3. NormCloseDebugLog()

4.8.3.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nCl oseDebugLog(Nor ml nst anceHandl e i nst ance) ;
4.8.3.2. Description

TBD

4.8.3.3. Return Values

TBD
4.8.4. NormOpenDebugPipe()

4.8.4.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor mOpenDebugPi pe(Nor ml nst anceHandl e i nst ance, const char* pi peNane);

63

NORM Developer's Guide

4.8.4.2. Description
TBD
4.8.4.3. Return Values

TBD

4.8.5. NormCloseDebugPipe()

4.8.5.1. Synopsis
#i ncl ude <nor mApi . h>

bool Nor nCl oseDebugPi pe(Nor m nst anceHandl e i nst ance) ;
4.8.5.2. Description

TBD

4.8.5.3. Return Values

TBD

64

