
Post-model-fitting procedures with glmmTMB

models: diagnostics, inference, and model
output

February 3, 2020

The purpose of this vignette is to describe (and test) the functions in
various downstream packages that are available for summarizing and other-
wise interpreting glmmTMB fits. Some of the packages/functions discussed
below may not be suitable for inference on parameters of the zero-inflation
or dispersion models, but will be restricted to the conditional-mean model.

library(glmmTMB)

library(car)

library(emmeans)

library(effects)

library(multcomp)

library(MuMIn)

library(DHARMa)

library(broom)

library(broom.mixed)

library(dotwhisker)

library(ggplot2); theme_set(theme_bw())

library(texreg)

library(xtable)

library(huxtable)

## retrieve slow stuff

L <- load(system.file("vignette_data","model_evaluation.rda",

package="glmmTMB"))
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A couple of example models:

owls_nb1 <- glmmTMB(SiblingNegotiation ~ FoodTreatment*SexParent +

(1|Nest)+offset(log(BroodSize)),

contrasts=list(FoodTreatment="contr.sum",

SexParent="contr.sum"),

family = nbinom1,

zi = ~1, data=Owls)

data("cbpp",package="lme4")

cbpp_b1 <- glmmTMB(incidence/size~period+(1|herd),

weights=size,family=binomial,

data=cbpp)

## simulated three-term Beta example

set.seed(1001)

dd <- data.frame(z=rbeta(1000,shape1=2,shape2=3),

a=rnorm(1000),b=rnorm(1000),c=rnorm(1000))

simex_b1 <- glmmTMB(z~a*b*c,family=beta_family,data=dd)

1 model checking and diagnostics

1.1 DHARMa

The DHARMa package provides diagnostics for hierarchical models. After
running

owls_nb1_simres <- simulateResiduals(owls_nb1)

you can plot the results:

plot(owls_nb1_simres)
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1.1.1 issues

• When you run simulateResiduals() you’ll notice a long warning
(actually a message: “It seems you are diagnosing a glmmTMB model
. . . ” that explains some issues with glmmTMB fits in DHARMa

• DHARMa will only work for models using families for which a simulate
method has been implemented (in TMB , and appropriately reflected in
glmmTMB )

2 Inference

2.1 car::Anova

We can use car::Anova() to get traditional ANOVA-style tables from
glmmTMB fits. A few limitations/reminders:

• these tables use Wald χ2 statistics for comparisons (neither likelihood
ratio tests nor F tests)

• they apply to the fixed effects of the conditional component of the
model only (other components might work, but haven’t been tested at
all)

• as always, if you want to do type 3 tests, you should probably set
sum-to-zero contrasts on factors and center numerical covariates (see
contrasts argument above)
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if (requireNamespace("car") && getRversion() >= "3.6.0") {
Anova(owls_nb1) ## default type II

Anova(owls_nb1,type="III")

}

Chisq Df Pr(>Chisq)

21.4 1 3.66e-06

46.1 1 1.1e-11

0.512 1 0.474

2.29 1 0.13

2.2 effects

effects_ok <- (requireNamespace("effects") && getRversion() >= "3.6.0")

if (effects_ok) {
(ae <- allEffects(owls_nb1))

plot(ae)

}

## Warning in Effect.glmmTMB(predictors, mod, vcov. = vcov., ...):

overriding variance function for effects: computed variances may

be incorrect

FoodTreatment*SexParent effect plot
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(the error can probably be ignored)

if (effects_ok) {
plot(allEffects(simex_b1))

}

a*b*c effect plot
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2.3 emmeans

emmeans(owls_nb1, poly ~ FoodTreatment | SexParent)

## $emmeans

## SexParent = Female:

## FoodTreatment emmean SE df lower.CL upper.CL

## Deprived 2.30 0.1104 592 2.09 2.52

5



## Satiated 1.44 0.1493 592 1.15 1.74

##

## SexParent = Male:

## FoodTreatment emmean SE df lower.CL upper.CL

## Deprived 2.23 0.0964 592 2.04 2.42

## Satiated 1.65 0.1357 592 1.38 1.91

##

## Results are given on the log (not the response) scale.

## Confidence level used: 0.95

##

## $contrasts

## SexParent = Female:

## contrast estimate SE df t.ratio p.value

## linear -0.859 0.149 592 -5.776 <.0001

##

## SexParent = Male:

## contrast estimate SE df t.ratio p.value

## linear -0.586 0.129 592 -4.531 <.0001

##

## Results are given on the log (not the response) scale.

2.4 drop1

stats::drop1 is a built-in R function that refits the model with various
terms dropped. In its default mode it respects marginality (i.e., it will only
drop the top-level interactions, not the main effects):

system.time(owls_nb1_d1 <- drop1(owls_nb1,test="Chisq"))

## user system elapsed

## 2.058 0.034 2.196

print(owls_nb1_d1)

## Single term deletions

##
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## Model:

## SiblingNegotiation ~ FoodTreatment * SexParent + (1 | Nest) +

## offset(log(BroodSize))

## Df AIC LRT Pr(>Chi)

## <none> 3383.6

## FoodTreatment:SexParent 1 3383.9 2.2766 0.1313

In principle, using scope = . ~ . - (1|Nest) should work to execute
a “type-3-like” series of tests, dropping the main effects one at a time while
leaving the interaction in (we have to use - (1|Nest) to exclude the random
effects because drop1 can’t handle them). However, due to the way that
R handles formulas, dropping main effects from an interaction of *factors*
has no effect on the overall model. (It would work if we were testing the
interaction of continuous variables.)

2.4.1 issues

The mixed package implements a true “type-3-like” parameter-dropping
mechanism for [g]lmer models. Something like that could in principle be
applied here.

2.5 Model selection and averaging with MuMIn

We can run MuMIn::dredge(owls_nb1) on the model to fit all possible
submodels. Since this takes a little while (45 seconds or so), we’ve instead
loaded some previously computed results:

owls_nb1_dredge

op <- par(mar=c(2,5,14,3))

plot(owls_nb1_dredge)
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par(op) ## restore graphics parameters

Model averaging:

model.avg(owls_nb1_dredge)

##

## Call:

## model.avg(object = owls_nb1_dredge)

##

## Component models:

## '14' '1234' '124' '1' '123' '12' '4' '(Null)'

## '24' '2'

##

## Coefficients:

## cond((Int)) cond(FoodTreatment1) zi((Int)) cond(SexParent1)

## full 0.5183099 0.353877 -2.079432 -0.009556203

## subset 0.5183099 0.353877 -2.079432 -0.021827791

## cond(FoodTreatment1:SexParent1)

## full 0.01569108

## subset 0.06797533

2.5.1 issues

• may not work for Beta models because the family component (”beta”)
is not identical to the name of the family function ( beta_family() )?
(Kamil Bartoń, pers. comm.)

2.6 multcomp for multiple comparisons and post hoc
tests

glht_glmmTMB <- function (model, ..., component="cond") {
glht(model, ...,

coef. = function(x) fixef(x)[[component]],

vcov. = function(x) vcov(x)[[component]],
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df = NULL)

}
modelparm.glmmTMB <- function (model, coef. = function(x) fixef(x)[[component]],

vcov. = function(x) vcov(x)[[component]],

df = NULL, component="cond", ...) {
multcomp:::modelparm.default(model, coef. = coef., vcov. = vcov.,

df = df, ...)

}

g1 <- glht(cbpp_b1, linfct = mcp(period = "Tukey"))

summary(g1)

##

## Simultaneous Tests for General Linear Hypotheses

##

## Multiple Comparisons of Means: Tukey Contrasts

##

##

## Fit: glmmTMB(formula = incidence/size ~ period + (1 | herd), data = cbpp,

## family = binomial, weights = size, ziformula = ~0, dispformula = ~1)

##

## Linear Hypotheses:

## Estimate Std. Error z value Pr(>|z|)

## 2 - 1 == 0 -0.9923 0.3066 -3.236 0.00635 **

## 3 - 1 == 0 -1.1287 0.3266 -3.455 0.00283 **

## 4 - 1 == 0 -1.5803 0.4274 -3.697 0.00106 **

## 3 - 2 == 0 -0.1363 0.3807 -0.358 0.98368

## 4 - 2 == 0 -0.5880 0.4703 -1.250 0.58571

## 4 - 3 == 0 -0.4516 0.4843 -0.933 0.78116

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

## (Adjusted p values reported -- single-step method)

2.6.1 issues

It is possible to make multcomp work in a way that (1) actually uses the S3
method structure and (2) doesn’t need access to private multcomp methods
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(i.e. accessed by multcomp::: ) ? Not sure, but both of the following hacks
should work. (The glht_glmmTMB solution below is clunky because it isn’t a
real S3 method; the model.parm.glmmTMB solution can’t be included in the
package source code as-is because ::: is not allowed in CRAN package code.)

3 Extracting coefficients, coefficient plots and

tables

3.1 broom and friends

The broom and broom.mixed packages are designed to extract information
from a broad range of models in a convenient (tidy) format; the dotwhisker
package builds on this platform to draw elegant coefficient plots.

if (requireNamespace("broom.mixed") && requireNamespace("dotwhisker")) {
(t1 <- broom.mixed::tidy(owls_nb1, conf.int = TRUE))

if (packageVersion("dotwhisker")>"0.4.1") {
## to get this version (which fixes various dotwhisker problems)

## use devtools::install_github("bbolker/broom.mixed") or

## wait for pull request acceptance/submission to CRAN/etc.

dwplot(owls_nb1)+geom_vline(xintercept=0,lty=2)

} else {
owls_nb1$coefficients <- TRUE ## hack!

dwplot(owls_nb1,by_2sd=FALSE)+geom_vline(xintercept=0,lty=2)

}
}

11
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SexParent1

FoodTreatment1
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3.1.1 issues

(these are more general dwplot issues)

• use black rather than color(1) when there’s only a single model, i.e. only
add aes(colour=model) conditionally? - draw points even if std err /
confint are NA (draw geom_point() as well as geom_pointrange() ?
need to apply all aesthetics, dodging, etc. to both ...)

• for glmmTMB models, allow labeling by component? or should this
be done by manipulating the tidied frame first? (i.e.: tidy(.) \%>\%

tidyr::unite(term,c(component,term)) )

3.2 coefficient tables with xtable

The xtable package can output data frames as LATEX tables; this isn’t quite
as elegant as stargazer etc., but is not a bad start. I’ve sprinkled lots of
hard line-breaks, spaces, and newlines in below: someone who was better
at TEX could certainly do a better job. ( xtable can also produce HTML
output.)

ss <- summary(owls_nb1)

## print table; add space,

pxt <- function(x,title) {

12



cat(sprintf("{\n\n\\textbf{%s}\n\\ \\\\\\vspace{2pt}\\ \\\\\n",title))
print(xtable(x), floating=FALSE); cat("\n\n")
cat("\\ \\\\\\vspace{5pt}\\ \\\\\n")

}

pxt(lme4::formatVC(ss$varcor$cond),"random effects variances")

pxt(coef(ss)$cond,"conditional fixed effects")

pxt(coef(ss)$zi,"conditional zero-inflation effects")

random effects variances

Groups Name Std.Dev.
1 Nest (Intercept) 0.35019

conditional fixed effects

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.43 0.09 4.63 0.00

FoodTreatment1 0.36 0.05 6.79 0.00
SexParent1 -0.03 0.05 -0.72 0.47

FoodTreatment1:SexParent1 0.07 0.05 1.51 0.13

conditional zero-inflation effects

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.06 0.29 -7.03 0.00

3.3 coefficient tables with texreg
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Model 1
(Intercept) 0.43∗∗∗

(0.09)
FoodTreatment1 0.36∗∗∗

(0.05)
SexParent1 −0.03

(0.05)
FoodTreatment1:SexParent1 0.07

(0.05)
zi (Intercept) −2.06∗∗∗

(0.29)
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 1: Owls model

source(system.file("other_methods","extract.R",package="glmmTMB"))

texreg(owls_nb1,caption="Owls model", label="tab:owls")

See output in Table 1.

3.4 coefficient tables with huxtable

The huxtable package allows output in either LATEX or HTML: this example
is tuned for LATEX.

cc <- c("intercept (mean)"="(Intercept)",

"food treatment (starvation)"="FoodTreatment1",

"parental sex (M)"="SexParent1",

"food $\\times$ sex"="FoodTreatment1:SexParent1")

h0 <- huxreg(" "=owls_nb1, # give model blank name so we don't get '(1)'

tidy_args=list(effects="fixed"),

coefs=cc,

error_pos="right",

statistics="nobs" # don't include logLik and AIC

)

names(h0)[2:3] <- c("estimate","std. err.")
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## allow use of math notation in name

h1 <- set_cell_properties(h0,row=5,col=1,escape_contents=FALSE)

cat(to_latex(h1,tabular_only=TRUE))

intercept (mean) 0.427 *** (0.092)
food treatment (starvation) 0.361 *** (0.053)
parental sex (M) -0.033 (0.047)
food × sex 0.068 (0.045)
nobs 599

*** p < 0.001; ** p < 0.01; * p < 0.05.

3.4.1 issues

• huxtable needs quite a few additional LATEX packages: use report_latex_dependencies()
to see what they are.

4 influence measures

Influence measures quantify the effects of particular observations, or groups
of observations, on the results of a statistical model; leverage and Cook’s
distance are the two most common formats for influence measures. If a
projection matrix (or “hat matrix”) is available, influence measures can be
computed efficiently; otherwise, the same quantities can be estimated by
brute-force methods, refitting the model with each group or observation suc-
cessively left out.

We’ve adapted the car::influence.merMod function to handle glmmTMB

models; because it uses brute force, it can be slow, especially if evaluating
the influence of individual observations. For now, it is included as a separate
source file rather than exported as a method (see below), although it may be
included in the package (or incorporated in the car package) in the future.

source(system.file("other_methods","influence_mixed.R", package="glmmTMB"))
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owls_nb1_influence_time <- system.time(

owls_nb1_influence <- influence_mixed(owls_nb1, groups="Nest")

)

Re-fitting the model with each of the 27 nests excluded takes 50 seconds
(on an old Macbook Pro). The car::infIndexPlot() function is one way
of displaying the results:

car::infIndexPlot(owls_nb1_influence)
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Or, you can transform the results and plot them however you like:

inf <- as.data.frame(owls_nb1_influence[["fixed.effects[-Nest]"]])

inf <- transform(inf,

nest=rownames(inf),

cooks=cooks.distance(owls_nb1_influence))
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inf$ord <- rank(inf$cooks)

if (require(reshape2)) {
inf_long <- melt(inf, id.vars=c("ord","nest"))

gg_infl <- (ggplot(inf_long,aes(ord,value))

+ geom_point()

+ facet_wrap(~variable, scale="free_y")

+ scale_x_reverse(expand=expand_scale(mult=0.15))

+ scale_y_continuous(expand=expand_scale(mult=0.15))

+ geom_text(data=subset(inf_long,ord>24),

aes(label=nest),vjust=-1.05)

)

print(gg_infl)

}
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5 to do

• more plotting methods ( sjplot )

• output with memisc
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• AUC etc. with ModelMetrics
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