
Glm family functions in glmnet 4.0

Trevor Hastie and Kenneth Tay

April 30, 2020

Contents

Introduction . 1
Additional families . 1
More on GLM families . 2

Fitting Gaussian, binomial and Poisson GLMs . 2
Timing comparisons . 3

Fitting other GLMs . 3
glmnetfit class . 5
Step size halving within iteratively reweighted least squares (IRLS) 5
Appendix 1: Internal parameters . 7

Introduction

The glmnet package fits a generalized linear model (GLM) via penalized maximum likelihood. Concretely, it
solves the problem

min
β0,β

1

N

N
∑

i=1

wili(yi, β0 + βT xi) + λ

[

1 − α

2
‖β‖2

2
+ α‖β‖1

]

over a grid of values of λ covering the entire range. In the equation above, li(y, η) is the negative log-likelihood
contribution for observation i. α ∈ [0, 1] is a tuning parameter which bridges the gap between the lasso
(α = 1, the default) and ridge regression (α = 0), while λ controls the overall strength of the penalty.

For glmnet v3.0-2 and below, glmnet could only solve the minimization problem above for a limited number
of built-in (hardwired) families via its family argument. In particular, glmnet could fit penalized Gaussian,
binomial, and Poisson GLMs (along with a few other special cases such as the Cox model, multinomial
regression, and multi-response Gaussian). In v4.0 onwards, glmnet allows the user to fit a penalized regression
model for any GLM by allowing for any legitimate GLM family object, as used by the stats:glm function.

Additional families

Before v4.0, glmnet’s family argument had to be one of a limited set of strings: c("gaussian",

"binomial", "poisson", "multinomial", "cox", "mgaussian"). This specified which of the built-in

families was to be used. From v4.0 onwards, in addition to these strings, the family argument toglmnetcan

also be the result of a call to afamilyfunction. (To learn more about family functions in

R, run?family‘ in the R console.)

All the functionality of glmnet applies to these new families, and hence their addition expands the scope of
glmnet considerably. In particular,

• All the methods work as before, such as plot, predict etc.
• large and sparse X matrices as input ;
• upper and lower bound constraints on parameters;
• cv.glmnet for selecting the tuning parameters;
• relax=TRUE for fitting the unpenalized models to the active sets;

1

• offsets can be provided;
• penalty strengths, standardization, and other options.

More on GLM families

A GLM is linear model for a response variable whose conditional distribution belongs to a one-dimensional
exponential family. Apart from Gaussian, Poisson and binomial, there are other interesting members of this
family. Some examples are Gamma, inverse Gaussian, negative binomial, to name a few. A GLM consists of
3 parts:

1. A linear predictor: ηi =
∑p

j=1
βT xi,

2. A link function: ηi = g(µi), and
3. A random component: yi ∼ f(y | µi).

The user gets to specify the link function g and the family of response distributions f(· | µ), and fitting a
GLM amounts to estimating the parameter β by maximum likelihood.

In R, these 3 parts of the GLM are encapsulated in an object of class family (run ?family in the R console
for more details). A family object is a list of GLM components which allows functions such as stats:glm to
fit GLMs in R. As an example, the code below shows the constituent parts for the binomial GLM, which is
what is used to fit linear logistic regression:

fam <- binomial()

class(fam)

#> [1] "family"

names(fam)

#> [1] "family" "link" "linkfun" "linkinv" "variance"

#> [6] "dev.resids" "aic" "mu.eta" "initialize" "validmu"

#> [11] "valideta" "simulate"

This is a list of functions and expressions that get used in the iteratively reweighted least squares algorithm
for fitting the GLM.

From v4.0 onwards, glmnet can fit penalized GLMs for any family as long as the family can be expressed as
a family object. In fact, users can make their own families, or customize existing families, just as they can
for regular GLMs.

Generally this option should be used if the desired family is not included in the built-in list. The reason is
that the entire path algorithm for the built-in families is implemented in Fortran, and so will be faster.

Fitting Gaussian, binomial and Poisson GLMs

First we demonstrate how we can use this new version of glmnet to fit ordinary least squares with the elastic
net penalty. We set up some fake data:

set.seed(1)

x <- matrix(rnorm(500), ncol = 5)

y <- rowSums(x[, 1:2]) + rnorm(100)

The function calls below demonstrate how we would fit the model with the old and new family parameter
options. To fit a linear regression by least squares, we want to use the Gaussian family. There is a hard-wired

option for this, specified via family="gaussian" (which is also the defaults for glmnet). Now we can also
use family = gaussian() to fit the same model.

library(glmnet)

oldfit <- glmnet(x, y, family = "gaussian")

newfit <- glmnet(x, y, family = gaussian())

2

glmnet distinguishes these two cases because the first is a character string, while the second is a GLM family
object. Of course if we really wanted to fit this model, we would use the hard-wired version, because it is
faster. Here we want to show that they are equivalent, up to machine precision.

There are slight differences in the algorithms used to compute the solutions, so some of the equality tests run
using testthat::expect_equal might fail. However, these same tests can be made to pass by decreasing
the thresh option in both function calls:

thresh <- 1e-18

oldfit <- glmnet(x, y, family="gaussian", thresh = thresh)

newfit <- glmnet(x, y, family = gaussian(), thresh = thresh)

tests for equality

library(testthat)

for (key in c("a0", "beta", "df", "dim", "lambda", "dev.ratio",

"nulldev", "offset", "nobs")) {

expect_equal(oldfit[[key]], newfit[[key]])

}

Next, we demonstrate the function calls for the binomial and Poisson GLM families.

biny <- ifelse(y > 0, 1, 0) # binary data

cnty <- ceiling(exp(y)) # count data

fitting binomial GLMs the old and new way

oldfit <- glmnet(x, biny, family = "binomial")

newfit <- glmnet(x, biny, family = binomial())

fitting Poisson GLMs the old and new way

oldfit <- glmnet(x, cnty, family = "poisson")

newfit <- glmnet(x, cnty, family = poisson())

Timing comparisons

In the examples above, the new version is simply replicating existing functionality in glmnet. For these
GLMs, we recommend specifying the GLM family as a string for computational efficiency. The Figures 1-2
illustrate that existing code for these GLM families is more efficient than the new code, especially for the
Gaussian case.

For the new families, the model is fit for each value of lambda by a “proximal Newton” algorithm, with the
outer loops coded in R. The inner loop is fit by a weighted elastic-net algorithm, which is implemented in
Fortran. However, the R code also exploits warm starts as it iterates down the path, so is reasonably efficient.

(In the figures, n and p denote the number of observations and features respectively. Each point is the mean
of 5 simulation runs. Note that both the x and y axes are on a log scale.)

Fitting other GLMs

The real power of the new code is in fitting GLMs other than the three in the previous section, by passing a
GLM "family" object as the family argument to glmnet.

For example, performing probit regression with the elastic net penalty is as simple as the code below:

newfit <- glmnet(x, biny, family = binomial(link = "probit"))

For the complementary log-log link we would specify family = binomial(link = "cloglog")

3

Figure 1: Timing comparisons for Gaussian family

Figure 2: Timing comparisons for binomial family

4

We can fit nonlinear least-squares models by using a different link with the Gaussian family; for example
family=gaussian(link="log").

For count data, we can fit a quasi-Poisson model that allows for overdispersion:

newfit <- glmnet(x, cnty, family = quasipoisson())

Performing negative binomial regression (instead of Poisson regression) is also easy:

library(MASS)

newfit <- glmnet(x, cnty, family = negative.binomial(theta = 5))

There are many other families, including quasi where users can customize their own families. In addition,
there are additional specialized families, such as statmod:tweedie for overdispersed count data, for example.

glmnetfit class

If glmnet is called with GLM family object as its argument, it returns an object with class:

class(newfit)

#> [1] "glmnetfit" "glmnet"

This is similar to the hard-wired classes; for example a family="gaussian" has class

fit=glmnet(x,y,family="gaussian")

class(fit)

#> [1] "elnet" "glmnet"

Importantly, both these inherit from class "glmnet", and so all the S3 methods such as plot, predict, coef,
and print will work out the box.

Step size halving within iteratively reweighted least squares (IRLS)

Before v4.0, glmnet solved the optimization problem for non-Gaussian families via iteratively reweighted
least squares (IRLS). In each iteration a unit Newton step was taken, and the algorithm terminated when the
unit Newton step did not decrease the deviance sufficiently. Because the algorithm was forced to take a unit
step, this could result in non-convergence of the algorithm in some cases.

Here is an example of the non-convergence for Poisson data. The stats:glm function converges and gives us
coefficients that are reasonably close to the truth:

set.seed(2020)

n <- 100

p <- 4

x <- matrix(runif(n*p, 5, 10), n)

y <- rpois(n, exp(rowMeans(x)))

glm fit

glmfit <- glm(y ~ x-1, family = poisson)

coef(glmfit)

#> x1 x2 x3 x4

#> 0.2498823 0.2480409 0.2517744 0.2505485

Fitting glmnet with lambda = 0 is equivalent to fitting a GLM. If we use glmnet version before v4.0, we
encounter an issue with non-convergence:

5

oldfit <- glmnet(x, y, family = "poisson", standardize = FALSE, intercept = FALSE,

lambda = 0)

#> Warning: from glmnet Fortran code (error code -1); Convergence for 1th

#> lambda value not reached after maxit=100000 iterations; solutions for

#> larger lambdas returned

#> Warning in getcoef(fit, nvars, nx, vnames): an empty model has been

#> returned; probably a convergence issue

coef(oldfit)

#> 5 x 1 sparse Matrix of class "dgCMatrix"

#> s0

#> (Intercept) .

#> V1 0

#> V2 .

#> V3 .

#> V4 .

This divergence happens because the unit Newton step was too large. To address this issue, from v4.0
onwards if a family object is passed to the family argument of glmnet, the IRLS algorithm will perform
step size halving. After computing the Newton step, the algorithm checks if the new solution has infinite (or
astronomically large) objective function value or if it results in invalid η or µ. If so, the algorithm halves the
step size repeatedly until these invalid conditions no longer hold.

The code below shows that this step size halving avoids the divergence we were experiencing in our running
example:

glmnet.control(mxitnr = 50) # increase maximum no. of IRLS iterations allowed

newfit <- glmnet(x, y, family = poisson(), standardize = FALSE, intercept = FALSE,

lambda = 0)

#> Warning: Infinite objective function!

#> Warning: step size truncated due to divergence

coef(newfit)

#> 5 x 1 sparse Matrix of class "dgCMatrix"

#> s0

#> (Intercept) .

#> V1 0.2498817

#> V2 0.2480411

#> V3 0.2517747

#> V4 0.2505485

In the process, glmnet warns the user that an infinite objective function value was encountered and that step
size halving was done to address the issue. The coefficients are close to those obtained by stats:glm, and can
be made to be numerically indistinguishable by tightening the convergence criterion in both function calls.

thresh <- 1e-15

glmfit <- glm(y ~ x-1, family = poisson,

control = list(epsilon = thresh, maxit = 100))

newfit <- glmnet(x, y, family = poisson(), standardize = FALSE, intercept = FALSE,

lambda = 0, thresh = thresh)

#> Warning: Infinite objective function!

#> Warning: step size truncated due to divergence

coef(glmfit) doesn't have intercept but coef(newfit does)

expect_equal(as.numeric(coef(glmfit)),

as.numeric(coef(newfit))[2:5])

6

Appendix 1: Internal parameters

With this generalization of glmnet, we have added two new internal parameters which control some aspects
of the model computation. The factory default settings are expected to work in most cases and users do not
need to make changes unless there are special requirements.

These two parameters are related to the iteratively reweighted least squares (IRLS) loop for solving the
optimization problem at each value of λ:

• epsnr: convergence threshold for the IRLS loop; factory default = 1e-08
• mxitnr: maximum iterations for the IRLS loop for each value of λ; factory default = 25

As with other internal parameters, epsnr and mxitnr can be changed by calling glmnet.control. For
example, if we wanted to increase the maximum number of iterations allowed for the IRLS loop for each λ,
we would run

glmnet.control(mxitnr = 50)

Any changes made to these internal parameters will hold for the duration of the R session unless they are
changed by the user with a subsequent call to glmnet.control. To restore the factory defaults, run

glmnet.control(factory = TRUE)

7

	Introduction
	Additional families
	More on GLM families

	Fitting Gaussian, binomial and Poisson GLMs
	Timing comparisons

	Fitting other GLMs
	glmnetfit class
	Step size halving within iteratively reweighted least squares (IRLS)
	Appendix 1: Internal parameters

