
Loading required namespace: Biobase

1

An introduction to NMF package
Version 0.22.0

Renaud Gaujoux

February 12, 2020

This vignette presents the NMF package1 (Rpackage:NMF), which implements a framework
for Nonnegative Matrix Factorization (NMF) algorithms in R (R). The objective is to provide
an implementation of some standard algorithms, while allowing the user to easily implement new
methods that integrate into a common framework, which facilitates analysis, result visualisation or
performance benchmarking. If you use the package NMF package in your analysis and publications
please cite:

Rpackage:NMF

Note that the NMF package includes several NMF algorithms, published by different authors.
Please make sure to also cite the paper(s) associated with the algorithm(s) you used. Citations
for those can be found in Table 1 and in the dedicated help pages ?gedAlgorithm.<algorithm>,
e.g., ?gedAlgorithm.SNMF R.

Installation: The latest stable version of the package can be installed from any CRAN repository
mirror:

Install

install.packages('NMF')

Load

library(NMF)

The NMF package is a project hosted on R-forge2. The latest development version is available
from https://r-forge.r-project.org/R/?group id=649 and may be installed from there3.

Support: UseRs interested in this package are encouraged to subscribe to the user mailing list
(nmf-user@lists.r-forge.r-project.org), which is the preferred channel for enquiries, bug reports,
feature requests, suggestions or NMF-related discussions. This will enable better tracking as well
as fruitful community exchange.

Important: Note that some of the classes defined in the NMF package have gained new slots.
If you need to load objects saved in versions prior 0.8.14 please use:

eg., load from some RData file

load('object.RData')

update class definition

object <- nmfObject(object)

1https://cran.r-project.org/package=NMF
2https://r-forge.r-project.org/projects/nmf
3install.packages("NMF", repos = "http://R-Forge.R-project.org")

2

https://cran.r-project.org/package=NMF
http://cran.r-project.org
https://r-forge.r-project.org/R/?group_id=649
https://lists.r-forge.r-project.org/mailman/listinfo/nmf-user
https://cran.r-project.org/package=NMF
https://r-forge.r-project.org/projects/nmf

Contents

1 Overview 4
1.1 Package features . 4
1.2 Nonnegative Matrix Factorization . 4
1.3 Algorithms . 5
1.4 Initialization: seeding methods . 5
1.5 How to run NMF algorithms . 7
1.6 Performances . 8
1.7 How to cite the package NMF . 9

2 Use case: Golub dataset 9
2.1 Single run . 9

2.1.1 Performing a single run . 9
2.1.2 Handling the result . 10
2.1.3 Extracting metagene-specific features . 12

2.2 Specifying the algorithm . 12
2.2.1 Built-in algorithms . 12
2.2.2 Custom algorithms . 13

2.3 Specifying the seeding method . 13
2.3.1 Built-in seeding methods . 14
2.3.2 Numerical seed . 14
2.3.3 Fixed factorization . 15
2.3.4 Custom function . 15

2.4 Multiple runs . 16
2.5 Parallel computations . 17

2.5.1 Memory considerations . 17
2.5.2 Parallel foreach backends . 17
2.5.3 Runtime options . 18
2.5.4 High Performance Computing on a cluster 18
2.5.5 Forcing sequential execution . 19

2.6 Estimating the factorization rank . 21
2.6.1 Overfitting . 22

2.7 Comparing algorithms . 23
2.8 Visualization methods . 25

3 Extending the package 26
3.1 Custom algorithm . 26

3.1.1 Using a custom algorithm . 26
3.1.2 Using a custom distance measure . 29
3.1.3 Defining algorithms for mixed sign data . 30
3.1.4 Specifying the NMF model . 31

3.2 Custom seeding method . 32

4 Advanced usage 33
4.1 Package specific options . 33

5 Session Info 35

3

1 Overview

1.1 Package features

This section provides a quick overview of the NMF package package’s features. Section 2 provides
more details, as well as sample code on how to actually perform common tasks in NMF analysis.

The NMF package package provides:

• 11 built-in algorithms;

• 4 built-in seeding methods;

• Single interface to perform all algorithms, and combine them with the seeding methods;

• Provides a common framework to test, compare and develop NMF methods;

• Accept custom algorithms and seeding methods;

• Plotting utility functions to visualize and help in the interpretation of the results;

• Transparent parallel computations;

• Optimized and memory efficient C++ implementations of the standard algorithms;

• Optional layer for bioinformatics using BioConductor (Gentleman2004);

1.2 Nonnegative Matrix Factorization

This section gives a formal definition for Nonnegative Matrix Factorization problems, and defines
the notations used throughout the vignette.

Let X be a n×p non-negative matrix, (i.e with xij ≥ 0, denoted X ≥ 0), and r > 0 an integer.
Non-negative Matrix Factorization (NMF) consists in finding an approximation

X ≈WH , (1)

where W,H are n× r and r× p non-negative matrices, respectively. In practice, the factorization
rank r is often chosen such that r � min(n, p). The objective behind this choice is to summarize
and split the information contained in X into r factors: the columns of W .

Depending on the application field, these factors are given different names: basis images,
metagenes, source signals. In this vignette we equivalently and alternatively use the terms basis
matrix or metagenes to refer to matrix W , and mixture coefficient matrix and metagene expression
profiles to refer to matrix H.

The main approach to NMF is to estimate matrices W and H as a local minimum:

min
W,H≥0

[D(X,WH) + R(W,H)]︸ ︷︷ ︸
=F (W,H)

(2)

where

• D is a loss function that measures the quality of the approximation. Common loss functions
are based on either the Frobenius distance

D : A,B 7→ Tr(ABt)

2
=

1

2

∑
ij

(aij − bij)
2,

or the Kullback-Leibler divergence.

D : A,B 7→ KL(A||B) =
∑
i,j

aij log
aij
bij
− aij + bij .

• R is an optional regularization function, defined to enforce desirable properties on matrices
W and H, such as smoothness or sparsity (Cichocki2008).

4

1.3 Algorithms

NMF algorithms generally solve problem (2) iteratively, by building a sequence of matrices (Wk, Hk)
that reduces at each step the value of the objective function F . Beside some variations in the
specification of F , they also differ in the optimization techniques that are used to compute the
updates for (Wk, Hk).

For reviews on NMF algorithms see (Berry2007; Chu2004) and references therein.
The NMF package package implements a number of published algorithms, and provides a

general framework to implement other ones. Table 1 gives a short description of each one of the
built-in algorithms:

The built-in algorithms are listed or retrieved with function nmfAlgorithm. A given algorithm
is retrieved by its name (a character key), that is partially matched against the list of available
algorithms:

list all available algorithms

nmfAlgorithm()

[1] "brunet" "KL" "lee" "Frobenius" "offset"

[6] "nsNMF" "ls-nmf" "pe-nmf" "siNMF" "snmf/r"

[11] "snmf/l"

retrieve a specific algorithm: 'brunet'

nmfAlgorithm('brunet')

<object of class: NMFStrategyIterative>

name: brunet [NMF]

objective: 'KL'

model: NMFstd

<Iterative schema>

onInit: none

Update: function (i, v, x, copy = FALSE, eps = .Machine$double.eps, ...)

Stop: 'connectivity'

onReturn: none

partial match is also fine

identical(nmfAlgorithm('br'), nmfAlgorithm('brunet'))

[1] TRUE

1.4 Initialization: seeding methods

NMF algorithms need to be initialized with a seed (i.e. a value for W0 and/or H0
4), from which

to start the iteration process. Because there is no global minimization algorithm, and due to the
problem’s high dimensionality, the choice of the initialization is in fact very important to ensure
meaningful results.

The more common seeding method is to use a random starting point, where the entries of
W and/or H are drawn from a uniform distribution, usually within the same range as the target
matrix’s entries. This method is very simple to implement. However, a drawback is that to achieve
stability one has to perform multiple runs, each with a different starting point. This significantly
increases the computation time needed to obtain the desired factorization.

To tackle this problem, some methods have been proposed so as to compute a reasonable
starting point from the target matrix itself. Their objective is to produce deterministic algorithms
that need to run only once, still giving meaningful results.

4Some algorithms only need one matrix factor (either W or H) to be initialized. See for example the SNMF/R(L)
algorithm of Kim and Park (KimH2007).

5

Key Description
brunet Standard NMF. Based on Kullback-Leibler divergence, it uses simple multi-

plicative updates from (Lee2001), enhanced to avoid numerical underflow.

Hkj ← Hkj

(∑
l

WlkVlj

(WH)lj

)
∑

l Wlk
(3)

Wik ← Wik

∑
l[HklAil/(WH)il]∑

l Hkl
(4)

Reference: (Brunet2004)
lee Standard NMF. Based on euclidean distance, it uses simple multiplicative

updates

Hkj ← Hkj
(WTV)kj

(WTWH)kj
(5)

Wik ← Wik
(V HT)ik

(WHHT)ik
(6)

Reference: (Lee2001)
nsNMF Non-smooth NMF. Uses a modified version of Lee and Seung’s multiplicative

updates for Kullback-Leibler divergence to fit a extension of the standard
NMF model. It is meant to give sparser results.
Reference: (Pascual-Montano2006)

offset Uses a modified version of Lee and Seung’s multiplicative updates for eu-
clidean distance, to fit a NMF model that includes an intercept.
Reference: (Badea2008)

pe-nmf Pattern-Expression NMF. Uses multiplicative updates to minimize an objec-
tive function based on the Euclidean distance and regularized for effective
expression of patterns with basis vectors.
Reference: (Zhang2008)

snmf/r, snmf/l Alternating Least Square (ALS) approach. It is meant to be very fast com-
pared to other approaches.
Reference: (KimH2007)

Table 1: Description of the implemented NMF algorithms. The first column gives the key to use
in the call to the nmf function.

For a review on some existing NMF initializations see (Albright2006) and references therein.
The NMF package package implements a number of already published seeding methods, and

provides a general framework to implement other ones. Table 2 gives a short description of each
one of the built-in seeding methods:

The built-in seeding methods are listed or retrieved with function nmfSeed. A given seeding
method is retrieved by its name (a character key) that is partially matched against the list of
available seeding methods:

list all available seeding methods

nmfSeed()

[1] "none" "random" "ica" "nndsvd"

retrieve a specific method: 'nndsvd'

6

nmfSeed('nndsvd')

<object of class: NMFSeed >

name: nndsvd

method: <function>

partial match is also fine

identical(nmfSeed('nn'), nmfSeed('nndsvd'))

[1] TRUE

Key Description
ica Uses the result of an Independent Component Analysis (ICA) (from the fastICA

package5 (Rpackage:fastICA)). Only the positive part of the result are used to
initialize the factors.

nnsvd Nonnegative Double Singular Value Decomposition. The basic algorithm contains
no randomization and is based on two SVD processes, one approximating the data
matrix, the other approximating positive sections of the resulting partial SVD factors
utilizing an algebraic property of unit rank matrices. It is well suited to initialize NMF
algorithms with sparse factors. Simple practical variants of the algorithm allows to
generate dense factors.
Reference: (Boutsidis2008)

none Fix seed. This method allows the user to manually provide initial values for both
matrix factors.

random The entries of each factors are drawn from a uniform distribution over [0,max(V)],
where V is the target matrix.

Table 2: Description of the implemented seeding methods to initialize NMF algorithms. The first
column gives the key to use in the call to the nmf function.

1.5 How to run NMF algorithms

Method nmf provides a single interface to run NMF algorithms. It can directly perform NMF on ob-
ject of class matrix or data.frame and ExpressionSet – if the Biobase package6 (Rpackage:Biobase)
is installed. The interface has four main parameters:

nmf(x, rank, method, seed, ...)

x is the target matrix, data.frame or ExpressionSet 7

rank is the factorization rank, i.e. the number of columns in matrix W .

method is the algorithm used to estimate the factorization. The default algorithm is given by the
package specific option ’default.algorithm’, which defaults to ’brunet’ on installation
(Brunet2004).

seed is the seeding method used to compute the starting point. The default method is given by
the package specific option ’default.seed’, which defaults to ’random’ on initialization
(see method ?rnmf for details on its implementation).

See also ?nmf for details on the interface and extra parameters.

6http://www.bioconductor.org/packages/release/bioc/html/Biobase.html
7ExpressionSet is the base class for handling microarray data in BioConductor, and is defined in the Biobase

package.

7

https://cran.r-project.org/package=fastICA
http://www.bioconductor.org/packages/release/bioc/html/Biobase.html
http://www.bioconductor.org/packages/release/bioc/html/Biobase.html

1.6 Performances

Since version 0.4, some built-in algorithms are optimized in C++, which results in a significant
speed-up and a more efficient memory management, especially on large scale data.

The older R versions of the concerned algorithms are still available, and accessible by adding
the prefix ’.R#’ to the algorithms’ access keys (e.g. the key ’.R#offset’ corresponds to the R
implementation of NMF with offset (Badea2008)). Moreover they do not show up in the listing
returned by the nmfAlgorithm function, unless argument all=TRUE:

nmfAlgorithm(all=TRUE)

[1] ".R#brunet" "brunet" "KL" ".R#lee" "lee"

[6] "Frobenius" ".R#offset" "offset" ".R#nsNMF" "nsNMF"

[11] "ls-nmf" "pe-nmf" ".siNMF" "siNMF" "snmf/r"

[16] "snmf/l"

to get all the algorithms that have a secondary R version

nmfAlgorithm(version='R')

brunet lee offset nsNMF

".R#brunet" ".R#lee" ".R#offset" ".R#nsNMF"

Table 3 shows the speed-up achieved by the algorithms that benefit from the optimized code.
All algorithms were run once with a factorization rank equal to 3, on the Golub data set which
contains a 5000× 38 gene expression matrix. The same numeric random seed (seed=123456) was
used for all factorizations. The columns C and R show the elapsed time (in seconds) achieved by
the C++ version and R version respectively. The column Speed.up contains the ratio R/C.

retrieve all the methods that have a secondary R version

meth <- nmfAlgorithm(version='R')

meth <- c(names(meth), meth)

meth

brunet lee

"brunet" "lee" "offset" "nsNMF" ".R#brunet" ".R#lee"

offset nsNMF

".R#offset" ".R#nsNMF"

if(requireNamespace("Biobase", quietly=TRUE)){
load the Golub data

data(esGolub)

compute NMF for each method

res <- nmf(esGolub, 3, meth, seed=123456)

extract only the elapsed time

t <- sapply(res, runtime)[3,]

}

Compute NMF method 'brunet' [1/8] ... OK

Compute NMF method 'lee' [2/8] ... OK

Compute NMF method 'offset' [3/8] ... OK

Compute NMF method 'nsNMF' [4/8] ... OK

Compute NMF method '.R#brunet' [5/8] ... OK

Compute NMF method '.R#lee' [6/8] ... OK

Compute NMF method '.R#offset' [7/8] ... OK

Compute NMF method '.R#nsNMF' [8/8] ... OK

8

C R Speed.up
brunet 1.41 5.74 4.06

lee 1.93 3.11 1.61
offset 3.09 7.55 2.44

nsNMF 2.43 9.74 4.02

Table 3: Performance speed up achieved by the optimized C++ implementation for some of the
NMF algorithms.

1.7 How to cite the package NMF

To view all the package’s bibtex citations, including all vignette(s) and manual(s):

plain text

citation('NMF')

or to get the bibtex entries

toBibtex(citation('NMF'))

2 Use case: Golub dataset

We illustrate the functionalities and the usage of the NMF package package on the – now standard
– Golub dataset on leukemia. It was used in several papers on NMF (Brunet2004; Gao2005)
and is included in the NMF package package’s data, wrapped into an ExpressionSet object.
For performance reason we use here only the first 200 genes. Therefore the results shown in the
following are not meant to be biologically meaningful, but only illustrative:

if(requireNamespace("Biobase", quietly=TRUE)){
data(esGolub)

esGolub

esGolub <- esGolub[1:200,]

remove the uneeded variable 'Sample' from the phenotypic data

esGolub$Sample <- NULL

}

Note: To run this example, the Biobase package from BioConductor is required.

2.1 Single run

2.1.1 Performing a single run

To run the default NMF algorithm on data esGolub with a factorization rank of 3, we call:

if(requireNamespace("Biobase", quietly=TRUE)){
default NMF algorithm

res <- nmf(esGolub, 3)

}

Here we did not specify either the algorithm or the seeding method, so that the computation
is done using the default algorithm and is seeded by the default seeding methods. These defaults
are set in the package specific options ’default.algorithm’ and ’default.seed’ respectively.

9

See also Sections 2.2 and 2.3 for how to explicitly specify the algorithm and/or the seeding
method.

2.1.2 Handling the result

The result of a single NMF run is an object of class NMFfit, that holds both the fitted NMF model
and data about the run:

if(requireNamespace("Biobase", quietly=TRUE)){
res

}

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: brunet

seed: random

RNG: 10403L, 624L, ..., 449848215L [825a7345133c6f7869527d185527e323]

distance metric: 'KL'

residuals: 543535.7

Iterations: 510

Timing:

user system elapsed

0.085 0.000 0.086

The fitted model can be retrieved via method fit, which returns an object of class NMF:

if(requireNamespace("Biobase", quietly=TRUE)){
fit(res)

}

<Object of class:NMFstd>

features: 200

basis/rank: 3

samples: 38

The estimated target matrix can be retrieved via the generic method fitted, which returns a
– generally big – matrix:

if(requireNamespace("Biobase", quietly=TRUE)){
V.hat <- fitted(res)

dim(V.hat)

}

[1] 200 38

Quality and performance measures about the factorization are computed by method summary:

if(requireNamespace("Biobase", quietly=TRUE)){
summary(res)

10

More quality measures are computed, if the target matrix is provided:

summary(res, target=esGolub)

}

rank sparseness.basis sparseness.coef rss

3.000000e+00 6.392676e-01 6.217884e-01 1.535504e+09

evar silhouette.coef silhouette.basis residuals

8.232656e-01 8.126484e-01 7.487792e-01 5.435357e+05

niter cpu cpu.all nrun

5.100000e+02 8.500000e-02 8.500000e-02 1.000000e+00

If there is some prior knowledge of classes present in the data, some other measures about
the unsupervised clustering’s performance are computed (purity, entropy, . . .). Here we use the
phenotypic variable Cell found in the Golub dataset, that gives the samples’ cell-types (it is a
factor with levels: T-cell, B-cell or NA):

if(requireNamespace("Biobase", quietly=TRUE)){
summary(res, class=esGolub$Cell)

}

rank sparseness.basis sparseness.coef purity

3.000000e+00 6.392676e-01 6.217884e-01 8.157895e-01

entropy silhouette.coef silhouette.basis residuals

3.926954e-01 8.126484e-01 7.487792e-01 5.435357e+05

niter cpu cpu.all nrun

5.100000e+02 8.500000e-02 8.500000e-02 1.000000e+00

The basis matrix (i.e. matrix W or the metagenes) and the mixture coefficient matrix (i.e
matrix H or the metagene expression profiles) are retrieved using methods basis and coef re-
spectively:

if(requireNamespace("Biobase", quietly=TRUE)){
get matrix W

w <- basis(res)

dim(w)

get matrix H

h <- coef(res)

dim(h)

}

[1] 3 38

If one wants to keep only part of the factorization, one can directly subset on the NMF object
on features and samples (separately or simultaneously). The result is a NMF object composed of
the selected rows and/or columns:

if(requireNamespace("Biobase", quietly=TRUE)){
keep only the first 10 features

res.subset <- res[1:10,]

class(res.subset)

dim(res.subset)

keep only the first 10 samples

dim(res[,1:10])

11

subset both features and samples:

dim(res[1:20,1:10])

}

[1] 20 10 3

2.1.3 Extracting metagene-specific features

In general NMF matrix factors are sparse, so that the metagenes can usually be characterized by
a relatively small set of genes. Those are determined based on their relative contribution to each
metagene.

Kim and Park (KimH2007) defined a procedure to extract the relevant genes for each meta-
gene, based on a gene scoring schema.

The NMF package implements this procedure in methods featureScore and extractFeature:

if(requireNamespace("Biobase", quietly=TRUE)){
only compute the scores

s <- featureScore(res)

summary(s)

compute the scores and characterize each metagene

s <- extractFeatures(res)

str(s)

}

List of 3

$: int [1:8] 39 74 2 91 167 190 103 174

$: int [1:13] 94 1 112 42 8 64 96 182 59 41 ...

$: int [1:5] 43 120 128 130 129

- attr(*, "method")= chr "kim"

2.2 Specifying the algorithm

2.2.1 Built-in algorithms

The NMF package package provides a number of built-in algorithms, that are listed or retrieved by
function nmfAlgorithm. Each algorithm is identified by a unique name. The following algorithms
are currently implemented (cf. Table 1 for more details):

nmfAlgorithm()

[1] "brunet" "KL" "lee" "Frobenius" "offset"

[6] "nsNMF" "ls-nmf" "pe-nmf" "siNMF" "snmf/r"

[11] "snmf/l"

The algorithm used to compute the NMF is specified in the third argument (method). For
example, to use the NMF algorithm from Lee and Seung (Lee2001) based on the Frobenius
euclidean norm, one make the following call:

if(requireNamespace("Biobase", quietly=TRUE)){
using Lee and Seung's algorithm

res <- nmf(esGolub, 3, 'lee')

algorithm(res)

}

12

[1] "lee"

To use the Nonsmooth NMF algorithm from (Pascual-Montano2006):

if(requireNamespace("Biobase", quietly=TRUE)){
using the Nonsmooth NMF algorithm with parameter theta=0.7

res <- nmf(esGolub, 3, 'ns', theta=0.7)

algorithm(res)

fit(res)

}

<Object of class:NMFns>

features: 200

basis/rank: 3

samples: 38

theta: 0.7

Or to use the PE-NMF algorithm from (Zhang2008):

if(requireNamespace("Biobase", quietly=TRUE)){
using the PE-NMF algorithm with parameters alpha=0.01, beta=1

res <- nmf(esGolub, 3, 'pe', alpha=0.01, beta=1)

res

}

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: pe-nmf

seed: random

RNG: 10403L, 270L, ..., -1891789767L [9c04e7ae51353a97aaa7ee4a9351c264]

distance metric: <function>

residuals: 67.35798

parameters: alpha=0.01, beta=1

Iterations: 2000

Timing:

user system elapsed

0.314 0.021 0.335

2.2.2 Custom algorithms

The NMF package package provides the user the possibility to define his own algorithms, and
benefit from all the functionalities available in the NMF framework. There are only few contraints
on the way the custom algorithm must be defined. See the details in Section 3.1.1.

2.3 Specifying the seeding method

The seeding method used to compute the starting point for the chosen algorithm can be set via
argument seed. Note that if the seeding method is deterministic there is no need to perform
multiple run anymore.

13

2.3.1 Built-in seeding methods

Similarly to the algorithms, the nmfSeed function can be used to list or retrieve the built-in seeding
methods. The following seeding methods are currently implemented:

nmfSeed()

[1] "none" "random" "ica" "nndsvd"

To use a specific method to seed the computation of a factorization, one simply passes its name
to nmf:

if(requireNamespace("Biobase", quietly=TRUE)){
res <- nmf(esGolub, 3, seed='nndsvd')

res

}

Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector

arithmetic is deprecated.

Use c() or as.vector() instead.

Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector

arithmetic is deprecated.

Use c() or as.vector() instead.

Warning in sqrt(S[i] * termp) * uup: Recycling array of length 1 in array-vector

arithmetic is deprecated.

Use c() or as.vector() instead.

Warning in sqrt(S[i] * termp) * vvp: Recycling array of length 1 in array-vector

arithmetic is deprecated.

Use c() or as.vector() instead.

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 200

basis/rank: 3

samples: 38

Details:

algorithm: brunet

seed: nndsvd

RNG: 10403L, 360L, ..., -1662044055L [e2af28ae027e4131346cdde9fd9cd9b8]

distance metric: 'KL'

residuals: 547143.5

Iterations: 1090

Timing:

user system elapsed

0.169 0.000 0.168

2.3.2 Numerical seed

Another possibility, useful when comparing methods or reproducing results, is to set the random
number generator (RNG) by passing a numerical value in argument seed. This value is used
to set the state of the RNG, and the initialization is performed by the built-in seeding method
’random’. When the function nmf exits, the value of the random seed (.Random.seed) is restored
to its original state – as before the call.

14

In the case of a single run (i.e. with nrun=1), the default is to use the current RNG, set with
the R core function set.seed. In the case of multiple runs, the computations use RNGstream,
as provided by the core RNG “L’Ecuyer-CMRG” (Lecuyer2002), which generates multiple in-
dependent random streams (one per run). This ensures the complete reproducibility of any given
set of runs, even when their computation is performed in parallel. Since RNGstream requires a
6-length numeric seed, a random one is generated if only a single numeric value is passed to seed.
Moreover, single runs can also use RNGstream by passing a 6-length seed.

if(requireNamespace("Biobase", quietly=TRUE)){
single run and single numeric seed

res <- nmf(esGolub, 3, seed=123456)

showRNG(res)

multiple runs and single numeric seed

res <- nmf(esGolub, 3, seed=123456, nrun=2)

showRNG(res)

single run with a 6-length seed

res <- nmf(esGolub, 3, seed=rep(123456, 6))

showRNG(res)

}

RNG kind: Mersenne-Twister / Inversion / Rejection

RNG state: 10403L, 624L, ..., 449848215L [825a7345133c6f7869527d185527e323]

RNG kind: L'Ecuyer-CMRG / Inversion / Rejection

RNG state: 10407L, -1896287838L, -649582056L, -453180354L, -16866084L, -2023648666L, -827768031L

RNG kind: L'Ecuyer-CMRG / Inversion / Rejection

RNG state: 10407L, 123456L, 123456L, 123456L, 123456L, 123456L, 123456L

NB: To show the RNG changes happening during the computation use .options=’v4’ to turn on verbosity at level 4.

In versions prior 0.6, one could specify option restore.seed=FALSE or ’-r’, this option is now deprecated.

2.3.3 Fixed factorization

Yet another option is to completely specify the initial factorization, by passing values for matrices
W and H:

if(requireNamespace("Biobase", quietly=TRUE)){
initialize a "constant" factorization based on the target dimension

init <- nmfModel(3, esGolub, W=0.5, H=0.3)

head(basis(init))

fit using this NMF model as a seed

res <- nmf(esGolub, 3, seed=init)

}

2.3.4 Custom function

The NMF package package provides the user the possibility to define his own seeding method, and
benefit from all the functionalities available in the NMF framework. There are only few contraints
on the way the custom seeding method must be defined. See the details in Section 3.2.

15

2.4 Multiple runs

When the seeding method is stochastic, multiple runs are usually required to achieve stability or a
resonable result. This can be done by setting argument nrun to the desired value. For performance
reason we use nrun=5 here, but a typical choice would lies between 100 and 200:

if(requireNamespace("Biobase", quietly=TRUE)){
res.multirun <- nmf(esGolub, 3, nrun=5)

res.multirun

}

<Object of class: NMFfitX1 >

Method: brunet

Runs: 5

RNG:

10407L, 2060366693L, -1979266846L, -1467721989L, 23029248L, 1469230593L, 1095525326L

Total timing:

user system elapsed

1.942 0.207 2.154

By default, the returned object only contains the best fit over all the runs. That is the
factorization that achieved the lowest approximation error (i.e. the lowest objective value). Even
during the computation, only the current best factorization is kept in memory. This limits the
memory requirement for performing multiple runs, which in turn allows to perform more runs.

The object res.multirun is of class NMFfitX1 that extends class NMFfit, the class returned
by single NMF runs. It can therefore be handled as the result of a single run and benefit from all
the methods defined for single run results.

If one is interested in keeping the results from all the runs, one can set the option keep.all=TRUE:

if(requireNamespace("Biobase", quietly=TRUE)){
explicitly setting the option keep.all to TRUE

res <- nmf(esGolub, 3, nrun=5, .options=list(keep.all=TRUE))

res

}

<Object of class: NMFfitXn >

Method: brunet

Runs: 5

RNG:

10407L, 1997333926L, -492612625L, 469522788L, -1828607723L, 1996453586L, -1167273941L

Total timing:

user system elapsed

1.643 0.144 1.882

Sequential timing:

user system elapsed

0.658 0.000 0.658

if(requireNamespace("Biobase", quietly=TRUE)){
or using letter code 'k' in argument .options

nmf(esGolub, 3, nrun=5, .options='k')

}

In this case, the result is an object of class NMFfitXn that also inherits from class list.
Note that keeping all the results may be memory consuming. For example, a 3-rank NMF fit8

8i.e. the result of a single NMF run with rank equal 3.

16

for the Golub gene expression matrix (5000× 38) takes about 28Kb9.

2.5 Parallel computations

To speed-up the analysis whenever possible, the NMF package package implements transparent
parallel computations when run on multi-core machines. It uses the foreach framework developed
by REvolution Computing foreach package10 (Rpackage:foreach), together with the related
doParallel parallel backend from the doParallel package11 (Rpackage:doParallel) – based on
the parallel package – to make use of all the CPUs available on the system, with each core
simultaneously performing part of the runs.

2.5.1 Memory considerations

Running multicore computations increases the required memory linearly with the number of cores
used. When only the best run is of interest, memory usage is optimized to only keep the current
best factorization. On non-Windows machine, further speed improvement are achieved by using
shared memory and mutex objects from the bigmemory package12 (Rpackage:bigmemory) and
the synchronicity package13 (Rpackage:synchronicity).

2.5.2 Parallel foreach backends

The default parallel backend used by the nmf function is defined by the package specific option
’pbackend’, which defaults to ’par’ – for doParallel. The backend can also be set on runtime
via argument .pbackend.

IMPORTANT NOTE: The parallel computation is based on the doParallel and parallel
packages, and the same care should be taken as stated in the vignette of the doMC pack-
age14 (Rpackage:doMC):

... it usually isn’t safe to run doMC and multicore from a GUI environment. In
particular, it is not safe to use doMC from R.app on Mac OS X. Instead, you should
use doMC from a terminal session, starting R from the command line.

Therefore, the nmf function does not allow to run multicore computation from the MacOS X GUI.
From version 0.8, other parallel backends are supported, and may be specified via argument

.pbackend:

.pbackend=’mpi’ uses the parallel backend doParallel package15 (Rpackage:doParallel) and
doMPI package16 (Rpackage:doMPI)

.pbackend=NULL

It is possible to specify that the currently registered backend should be used, by setting argu-
ment .pbackend=NULL. This allow to perform parallel computations with “permanent” backends
that are configured externally of the nmf call.

9This size might change depending on the architecture (32 or 64 bits)
10https://cran.r-project.org/package=foreach
11https://cran.r-project.org/package=doParallel
12https://cran.r-project.org/package=bigmemory
13https://cran.r-project.org/package=synchronicity
14https://cran.r-project.org/package=doMC
15https://cran.r-project.org/package=doParallel
16https://cran.r-project.org/package=doMPI

17

https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=bigmemory
https://cran.r-project.org/package=synchronicity
https://cran.r-project.org/package=doMC
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=doMPI
https://cran.r-project.org/package=foreach
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=bigmemory
https://cran.r-project.org/package=synchronicity
https://cran.r-project.org/package=doMC
https://cran.r-project.org/package=doParallel
https://cran.r-project.org/package=doMPI

2.5.3 Runtime options

There are two other runtime options, parallel and parallel.required, that can be passed via
argument .options, to control the behaviour of the parallel computation (see below).

A call for multiple runs will be computed in parallel if one of the following condition is satisfied:

• call with option ’P’ or parallel.required set to TRUE (note the upper case in ’P’). In
this case, if for any reason the computation cannot be run in parallel (packages requirements,
OS, ...), then an error is thrown. Use this mode to force the parallel execution.

• call with option ’p’ or parallel set to TRUE. In this case if something prevents a parallel
computation, the factorizations will be done sequentially.

• a valid parallel backend is specified in argument .pbackend. For the moment it can either
be the string ’mc’ or a single numeric value specifying the number of core to use. Unless
option ’P’ is specified, it will run using option ’p’ (i.e. try-parallel mode).

NB: The number of processors to use can also be specified in the runtime options as e.g. .options=’p4’ or .options=’P4’ –

to ask or request 4 CPUs.

Examples
The following exmaples are run with .options=’v’ which turn on verbosity at level 1, that will
show which parallell setting is used by each computation. Although we do not show the output
here, the user is recommended to run these commands on his machine to see the internal differences
of each call.

if(requireNamespace("Biobase", quietly=TRUE)){
the default call will try to run in parallel using all the cores

=> will be in parallel if all the requirements are satisfied

nmf(esGolub, 3, nrun=5, .opt='v')

request a certain number of cores to use => no error if not possible

nmf(esGolub, 3, nrun=5, .opt='vp8')

force parallel computation: use option 'P'

nmf(esGolub, 3, nrun=5, .opt='vP')

require an improbable number of cores => error

nmf(esGolub, 3, nrun=5, .opt='vP200')

}

2.5.4 High Performance Computing on a cluster

To achieve further speed-up, the computation can be run on an HPC cluster. In our tests we used
the doMPI package17 (Rpackage:doMPI) to perform 100 factorizations using hybrid parallel
computation on 4 quadri-core machines – making use of all the cores computation on each machine.

17https://cran.r-project.org/package=doMPI

18

https://cran.r-project.org/package=doMPI
https://cran.r-project.org/package=doMPI

file: mpi.R

if(requireNamespace("Biobase", quietly=TRUE)){
0. Create and register an MPI cluster

library(doMPI)

cl <- startMPIcluster()

registerDoMPI(cl)

library(NMF)

run on all workers using the current parallel backend

data(esGolub)

res <- nmf(esGolub, 3, 'brunet', nrun=n, .opt='p', .pbackend=NULL)

save result

save(res, file='result.RData')

4. Shutdown the cluster and quit MPI

closeCluster(cl)

mpi.quit()

}

Passing the following shell script to qsub should launch the execution on a Sun Grid En-
gine HPC cluster, with OpenMPI. Some adaptation might be necessary for other queueing sys-
tems/installations.

#!/bin/bash

#$ -cwd

#$ -q opteron.q

#$ -pe mpich_4cpu 16

echo "Got $NSLOTS slots. $TMP/machines"

orterun -v -n $NSLOTS -hostfile $TMP/machines R --slave -f mpi.R

2.5.5 Forcing sequential execution

When running on a single core machine, NMF package package has no other option than perform-
ing the multiple runs sequentially, one after another. This is done via the sapply function.

On multi-core machine, one usually wants to perform the runs in parallel, as it speeds up the
computation (cf. Section 2.5). However in some situation (e.g. while debugging), it might be
useful to force the sequential execution of the runs. This can be done via the option ’p1’ to run
on a single core , or with .pbackend=’seq’ to use the foreach backend doSEQ or to NA to use a
standard sapply call:

if(requireNamespace("Biobase", quietly=TRUE)){
parallel execution on 2 cores (if possible)

res1 <- nmf(esGolub, 3, nrun=5, .opt='vp2', seed=123)

or use the doParallel with single core

res2 <- nmf(esGolub, 3, nrun=5, .opt='vp1', seed=123)

force sequential computation by sapply: use option '-p' or .pbackend=NA

19

res3 <- nmf(esGolub, 3, nrun=5, .opt='v-p', seed=123)

res4 <- nmf(esGolub, 3, nrun=5, .opt='v', .pbackend=NA, seed=123)

or use the SEQ backend of foreach: .pbackend='seq'

res5 <- nmf(esGolub, 3, nrun=5, .opt='v', .pbackend='seq', seed=123)

all results are all identical

nmf.equal(list(res1, res2, res3, res4, res5))

}

NMF algorithm: ’brunet’

Multiple runs: 5

Mode: parallel (2/4 core(s))

##

Runs: |

Runs: | | 0%

Runs: |

Runs: |==| 100%

System time:

user system elapsed

1.931 0.208 2.141

NMF algorithm: ’brunet’

Multiple runs: 5

Mode: sequential [foreach:doParallelMC]

##

Runs: |

Runs: | | 0%

Runs: |

Runs: |======== | 17%

Runs: |

Runs: |================= | 33%

Runs: |

Runs: |========================= | 50%

Runs: |

Runs: |================================= | 67%

Runs: |

Runs: |== | 83%

Runs: |

Runs: |==| 100%

System time:

user system elapsed

2.320 0.008 2.328

NMF algorithm: ’brunet’

Multiple runs: 5

Mode: sequential [sapply]

Runs: 1* 2* 3* 4 5 ... DONE

System time:

user system elapsed

1.228 0.000 1.228

20

NMF algorithm: ’brunet’

Multiple runs: 5

Mode: sequential [sapply]

Runs: 1* 2* 3* 4 5 ... DONE

System time:

user system elapsed

1.223 0.000 1.222

NMF algorithm: ’brunet’

Multiple runs: 5

Mode: sequential [foreach:doSEQ]

##

Runs: |

Runs: | | 0%

Runs: |

Runs: |======== | 17%

Runs: |

Runs: |================= | 33%

Runs: |

Runs: |========================= | 50%

Runs: |

Runs: |================================= | 67%

Runs: |

Runs: |== | 83%

Runs: |

Runs: |==| 100%

System time:

user system elapsed

2.335 0.002 2.336

[1] TRUE

2.6 Estimating the factorization rank

A critical parameter in NMF is the factorization rank r. It defines the number of metagenes used
to approximate the target matrix. Given a NMF method and the target matrix, a common way of
deciding on r is to try different values, compute some quality measure of the results, and choose
the best value according to this quality criteria.

Several approaches have then been proposed to choose the optimal value of r. For example,
(Brunet2004) proposed to take the first value of r for which the cophenetic coefficient starts
decreasing, (Hutchins2008) suggested to choose the first value where the RSS curve presents an
inflection point, and (Frigyesi2008) considered the smallest value at which the decrease in the
RSS is lower than the decrease of the RSS obtained from random data.

The NMF package package provides functions to help implement such procedures and plot the
relevant quality measures. Note that this can be a lengthy computation, depending on the data
size. Whereas the standard NMF procedure usually involves several hundreds of random initial-
ization, performing 30-50 runs is considered sufficient to get a robust estimate of the factorization
rank (Brunet2004; Hutchins2008). For performance reason, we perform here only 10 runs for
each value of the rank.

if(requireNamespace("Biobase", quietly=TRUE)){
perform 10 runs for each value of r in range 2:6

21

if(requireNamespace("Biobase", quietly=TRUE)){
plot(estim.r)

}

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●

●
●

●

sparseness

residuals rss silhouette

cophenetic dispersion evar

2 3 4 5 6

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
0.775

0.800

0.825

0.850

0.875

0.6

0.8

1.0

0.875

0.900

0.925

0.950

1.25e+09

1.50e+09

1.75e+09

0.980

0.985

0.990

0.995

4e+05

5e+05

6e+05

0.600

0.625

0.650

0.675

Factorization rank

Measure type

●

●

●

●

Basis

Best fit

Coefficients

Consensus

NMF rank survey

Figure 1: Estimation of the rank: Quality measures computed from 10 runs for each value of r.

estim.r <- nmf(esGolub, 2:6, nrun=10, seed=123456)

}

The result is a S3 object of class NMF.rank, that contains a data.frame with the quality
measures in column, and the values of r in row. It also contains a list of the consensus matrix for
each value of r.

All the measures can be plotted at once with the method plot (Figure 1), and the function
consensusmap generates heatmaps of the consensus matrix for each value of the rank. In the
context of class discovery, it is useful to see if the clusters obtained correspond to known classes.
This is why in the particular case of the Golub dataset, we added annotation tracks for the
two covariates available (’Cell’ and ’ALL.AML’). Since we removed the variable ’Sample’ in the
preliminaries, these are the only variables in the phenotypic data.frame embedded within the
ExpressionSet object, and we can simply pass the whole object to argument annCol (Figure 2).
One can see that at rank 2, the clusters correspond to the ALL and AML samples respectively,
while rank 3 separates AML from ALL/T-cell and ALL/B-cell18.

2.6.1 Overfitting

Even on random data, increasing the factorization rank would lead to decreasing residuals, as more
variables are available to better fit the data. In other words, there is potentially an overfitting
problem.

18Remember that the plots shown in Figure 2 come from only 10 runs, using the 200 first genes in the dataset,
which explains the somewhat not so clean clusters. The results are in fact much cleaner when using the full dataset
(Figure 6).

22

if(requireNamespace("Biobase", quietly=TRUE)){
consensusmap(estim.r, annCol=esGolub, labCol=NA, labRow=NA)

}

ALL.AML
ALL
AML

Cell

B−cell
T−cell

basis
1
2

consensus
1
2

silhouette
1

0.77

0

0.2

0.4

0.6

0.8

1

rank = 2

ALL.AML
ALL
AML

Cell

B−cell
T−cell

basis
1
2
3

consensus
1
2
3

silhouette
1

0.33

0

0.2

0.4

0.6

0.8

1

rank = 3

ALL.AML
ALL
AML

Cell

B−cell
T−cell

basis
1
2
3
4

consensus
1
2
3
4

silhouette
1

0.04

0

0.2

0.4

0.6

0.8

1

rank = 4

ALL.AML
ALL
AML

Cell

B−cell
T−cell

basis
1
2
3
4
50

0.2

0.4

0.6

0.8

1

rank = 5

ALL.AML
ALL
AML

Cell

B−cell
T−cell

basis
1
2
3
4
5
6

0

0.2

0.4

0.6

0.8

1

rank = 6

Figure 2: Estimation of the rank: Consensus matrices computed from 10 runs for each value of
r.

In this context, the approach from (Frigyesi2008) may be useful to prevent or detect over-
fitting as it takes into account the results for unstructured data. However it requires to compute
the quality measure(s) for the random data. The NMF package package provides a function that
shuffles the original data, by permuting the rows of each column, using each time a different per-
mutation. The rank estimation procedure can then be applied to the randomized data, and the
“random” measures added to the plot for comparison (Figure 3).

2.7 Comparing algorithms

To compare the results from different algorithms, one can pass a list of methods in argument
method. To enable a fair comparison, a deterministic seeding method should also be used. Here
we fix the random seed to 123456.

if(requireNamespace("Biobase", quietly=TRUE)){
fit a model for several different methods

res.multi.method <- nmf(esGolub, 3, list('brunet', 'lee', 'ns'), seed=123456, .options='t')

}

Compute NMF method 'brunet' [1/3] ... OK

Compute NMF method 'lee' [2/3] ... OK

Compute NMF method 'ns' [3/3] ... OK

Passing the result to method compare produces a data.frame that contains summary measures
for each method. Again, prior knowledge of classes may be used to compute clustering quality
measures:

if(requireNamespace("Biobase", quietly=TRUE)){
compare(res.multi.method)

23

if(requireNamespace("Biobase", quietly=TRUE)){
shuffle original data

V.random <- randomize(esGolub)

estimate quality measures from the shuffled data (use default NMF algorithm)

estim.r.random <- nmf(V.random, 2:6, nrun=10, seed=123456)

plot measures on same graph

plot(estim.r, estim.r.random)

}

● ●
● ● ●

●
● ● ● ●

● ●
●

● ●

● ● ● ● ●

●
●

● ● ●

●
● ● ● ●

●
● ● ● ●

●

● ● ●

●

●

●

●

●

●

● ●

● ●
●

sparseness

residuals rss silhouette

cophenetic dispersion evar

2 3 4 5 6

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6

2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
0.2

0.4

0.6

0.8

0.25

0.50

0.75

1.00

0.2

0.4

0.6

0.8

1.0

2e+09

4e+09

6e+09

0.8

0.9

1.0

1e+06

2e+06

3e+06

0.3

0.4

0.5

0.6

0.7

0.8

Factorization rank

Data

● x

y

Measure type

●

●

●

●

Basis

Best fit

Coefficients

Consensus

NMF rank survey

Figure 3: Estimation of the rank: Comparison of the quality measures with those obtained from
randomized data. The curves for the actual data are in blue and green, those for the randomized
data are in red and pink. The estimation is based on Brunet’s algorithm.

24

If prior knowledge of classes is available

compare(res.multi.method, class=esGolub$Cell)

}

method seed rng metric rank sparseness.basis sparseness.coef

brunet brunet random 1 KL 3 0.6392676 0.6217884

lee lee random 1 euclidean 3 0.7268875 0.4465608

nsNMF nsNMF random 1 KL 3 0.6777185 0.7350386

purity entropy silhouette.coef silhouette.basis residuals

brunet 0.8157895 0.3926954 0.8126484 0.7487792 543535.7

lee 0.5789474 0.7231282 0.7147803 0.6764436 673513120.5

nsNMF 0.7894737 0.4691212 0.8654196 0.7946175 585106.4

niter cpu cpu.all nrun

brunet 510 0.091 0.091 1

lee 1780 0.323 0.323 1

nsNMF 970 0.251 0.251 1

Because the computation was performed with error tracking enabled, an error plot can be
produced by method plot (Figure 4). Each track is normalized so that its first value equals one,
and stops at the iteration where the method’s convergence criterion was fulfilled.

2.8 Visualization methods

Error track

If the NMF computation is performed with error tracking enabled – using argument .options –
the trajectory of the objective value is computed during the fit. This computation is not enabled
by default as it induces some overhead.

if(requireNamespace("Biobase", quietly=TRUE)){
run nmf with .option='t'

res <- nmf(esGolub, 3, .options='t')

or with .options=list(track=TRUE)

}

The trajectory can be plot with the method plot (Figure 4):

Heatmaps

The methods basismap, coefmap and consensusmap provide an easy way to visualize respectively
the resulting basis matrix (i.e. metagenes), mixture coefficient matrix (i.e. metaprofiles) and the
consensus matrix, in the case of multiple runs. It produces pre-configured heatmaps based on the
function aheatmap, the underlying heatmap engine provided with the package NMF. The default
heatmaps produced by these functions are shown in Figures 5 and 6. They can be customized in
many different ways (colours, annotations, labels). See the dedicated vignette “NMF: generating
heatmaps” or the help pages ?coefmap and ?aheatmap for more information.

An important and unique feature of the function aheatmap, is that it makes it possible to
combine several heatmaps on the same plot, using the both standard layout calls par(mfrow=...)
and layout(...), or grid viewports from grid graphics. The plotting context is automat-
ically internally detected, and a correct behaviour is achieved thanks to the gridBase pack-
age19 (Rpackage:gridBase). Examples are provided in the dedicated vignette mentioned above.

The rows of the basis matrix often carry the high dimensionality of the data: genes, loci, pixels,
features, etc. . . The function basismap extends the use of argument subsetRow (from aheatmap)

19https://cran.r-project.org/package=gridBase

25

https://cran.r-project.org/package=gridBase
https://cran.r-project.org/package=gridBase

if(requireNamespace("Biobase", quietly=TRUE)){
plot(res)

plot(res.multi.method)

}

100 200 300 400 500 600

55
00

00
56

00
00

57
00

00
58

00
00

59
00

00
60

00
00

NMF Residuals
Method: brunet − Rank: 3

Iterations

O
bj

ec
tiv

e
va

lu
e

(K
L)

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●

0 500 1000 1500

0.
88

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

NMF Residuals

Iterations

N
or

m
al

is
ed

 o
bj

ec
tiv

e
va

lu
es

Algorithm

brunet
lee
nsNMF

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

●
●

●
●

● ● ●
● ●●

●

●

●

●
● ● ● ● ● ●

●
●

● ● ● ●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●●

Figure 4: Error track for a single NMF run (left) and multiple method runs (right)

to the specification of a feature selection method. In Figure 5 we simply used subsetRow=TRUE,
which subsets the rows using the method described in (KimH2007), to only keep the basis-specific
features (e.g. the metagene-specific genes). We refer to the relevant help pages ?basismap and
?aheatmap for more details about other possible values for this argument.

In the case of multiple runs the function consensusmap plots the consensus matrix, i.e. the
average connectivity matrix across the runs (see results in Figure 6 for a consensus matrix obtained
with 100 runs of Brunet’s algorithm on the complete Golub dataset):

3 Extending the package

We developed the NMF package package with the objective to facilitate the integration of new
NMF methods, trying to impose only few requirements on their implementations. All the built-in
algorithms and seeding methods are implemented as strategies that are called from within the
main interface method nmf.

The user can define new strategies and those are handled in exactly the same way as the
built-in ones, benefiting from the same utility functions to interpret the results and assess their
performance.

3.1 Custom algorithm

3.1.1 Using a custom algorithm

To define a strategy, the user needs to provide a function that implements the complete algotihm.
It must be of the form:

my.algorithm <- function(x, seed, param.1, param.2){
do something with starting point

26

if(requireNamespace("Biobase", quietly=TRUE)){
layout(cbind(1,2))

basis components

basismap(res, subsetRow=TRUE)

mixture coefficients

coefmap(res)

}

1 2 3

U51240_at

M16336_s_at

Z69881_at

X86691_at

M54992_at

K01911_at

M22324_at

M23197_at

U73167_cds5_at

U46006_s_at

M22638_at

L29376_at

D61391_at

U76189_at

U76421_at

M32053_at

M91196_at

U40434_at

U64998_at

M54915_s_at

M23178_s_at

M12759_at

L42379_at

X61587_at

X53296_s_at

X57579_s_at basis
1
2
3

0

0.2

0.4

0.6

0.8

1

Basis components

A
M

L_14

A
LL_7092_B

−
cell

A
M

L_3

A
M

L_16

A
M

L_7

A
LL_20185_B

−
cell

A
LL_17281_B

−
cell

A
LL_19183_B

−
cell

A
LL_16415_T

−
cell

A
LL_21302_B

−
cell

A
LL_19881_T

−
cell

A
LL_9723_T

−
cell

A
LL_17638_T

−
cell

A
LL_9692_B

−
cell

A
LL_22474_T

−
cell

A
LL_17269_T

−
cell

A
LL_11103_B

−
cell

A
LL_9186_T

−
cell

A
LL_14402_T

−
cell

A
LL_549_B

−
cell

A
LL_14749_B

−
cell

A
M

L_2

A
M

L_5

A
M

L_6

A
M

L_12

A
M

L_1

A
M

L_13

A
M

L_20

A
LL_R

23_B
−

cell

A
LL_9335_B

−
cell

A
LL_5982_B

−
cell

A
LL_23953_B

−
cell

A
LL_20414_B

−
cell

A
LL_18239_B

−
cell

A
LL_17929_B

−
cell

A
LL_28373_B

−
cell

A
LL_R

11_B
−

cell

A
LL_19769_B

−
cell

3

2

1

basis
1
2
3

0

0.2

0.4

0.6

0.8

Mixture coefficients

Figure 5: Heatmap of the basis and the mixture coefficient matrices. The rows of the basis
matrix were selected using the default feature selection method – described in (KimH2007).

27

...

return updated starting point

return(seed)

}

Where:

target is a matrix;

start is an object that inherits from class NMF. This S4 class is used to handle NMF models
(matrices W and H, objective function, etc. . .);

param.1, param.2 are extra parameters specific to the algorithms;

The function must return an object that inherits from class NMF.
For example:

my.algorithm <- function(x, seed, scale.factor=1){
do something with starting point

...

for example:

1. compute principal components

pca <- prcomp(t(x), retx=TRUE)

2. use the absolute values of the first PCs for the metagenes

Note: the factorization rank is stored in object 'start'

factorization.rank <- nbasis(seed)

basis(seed) <- abs(pca$rotation[,1:factorization.rank])

use the rotated matrix to get the mixture coefficient

use a scaling factor (just to illustrate the use of extra parameters)

coef(seed) <- t(abs(pca$x[,1:factorization.rank])) / scale.factor

return updated data

return(seed)

}

To use the new method within the package framework, one pass my.algorithm to main interface
nmf via argument method. Here we apply the algorithm to some matrix V randomly generated:

n <- 50; r <- 3; p <- 20

V <-syntheticNMF(n, r, p)

nmf(V, 3, my.algorithm, scale.factor=10)

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: nmf_22a214e88c73

28

seed: random

RNG: 10403L, 459L, ..., -419496537L [6057ec119f63baf6773461376d4e5e22]

distance metric: 'euclidean'

residuals: 492.4497

parameters: scale.factor=10

Timing:

user system elapsed

0.004 0.000 0.004

3.1.2 Using a custom distance measure

The default distance measure is based on the euclidean distance. If the algorithm is based on
another distance measure, this one can be specified in argument objective, either as a character

string corresponding to a built-in objective function, or a custom function definition20:

based on Kullback-Leibler divergence

nmf(V, 3, my.algorithm, scale.factor=10, objective='KL')

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: nmf_22a275b21428

seed: random

RNG: 10403L, 45L, ..., 1096266081L [2bba3dd48c10aad2ebbb49eaa96efe62]

distance metric: 'KL'

residuals: 1491.885

parameters: scale.factor=10

Timing:

user system elapsed

0.009 0.000 0.008

based on custom distance metric

nmf(V, 3, my.algorithm, scale.factor=10

, objective=function(model, target, ...){
(sum((target-fitted(model))^4))^{1/4}

}
)

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: nmf_22a238e9d7c4

seed: random

20Note that from version 0.8, the arguments for custom objective functions have been swapped: (1) the current
NMF model, (2) the target matrix

29

RNG: 10403L, 255L, ..., 1096266081L [0447c2aead14d877b7393c7fa4ca996c]

distance metric: <function>

residuals: 8.41365

parameters: scale.factor=10

Timing:

user system elapsed

0.002 0.000 0.002

3.1.3 Defining algorithms for mixed sign data

All the algorithms implemented in the NMF package package assume that the input data is
nonnegative. However, some methods exist in the litterature that work with relaxed constraints,
where the input data and one of the matrix factors (W or H) are allowed to have negative entries
(eg. semi-NMF (Ding2010; Roux2008)). Strictly speaking these methods do not fall into the
NMF category, but still solve constrained matrix factorization problems, and could be considered
as NMF methods when applied to non-negative data. Moreover, we received user requests to
enable the development of semi-NMF type methods within the package’s framework. Therefore,
we designed the NMF package package so that such algorithms – that handle negative data – can
be integrated. This section documents how to do it.

By default, as a safe-guard, the sign of the input data is checked before running any method,
so that the nmf function throws an error if applied to data that contain negative entries 21. To
extend the capabilities of the NMF package package in handling negative data, and plug mixed
sign NMF methods into the framework, the user needs to specify the argument mixed=TRUE in
the call to the nmf function. This will skip the sign check of the input data and let the custom
algorithm perform the factorization.

As an example, we reuse the previously defined custom algorithm22:

put some negative input data

V.neg <- V; V.neg[1,] <- -1;

this generates an error

try(nmf(V.neg, 3, my.algorithm, scale.factor=10))

Error: NMF::nmf - Input matrix x contains some negative entries.

this runs my.algorithm without error

nmf(V.neg, 3, my.algorithm, mixed=TRUE, scale.factor=10)

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: nmf_22a244ffbb2f

seed: random

RNG: 10403L, 465L, ..., 1096266081L [ea8ff0cac361311538ba61100c10709c]

distance metric: 'euclidean'

residuals: 489.997

21Note that on the other side, the sign of the factors returned by the algorithms is never checked, so that one
can always return factors with negative entries.

22As it is defined here, the custom algorithm still returns nonnegative factors, which would not be desirable in a
real example, as one would not be able to closely fit the negative entries.

30

parameters: scale.factor=10

Timing:

user system elapsed

0.002 0.000 0.002

3.1.4 Specifying the NMF model

If not specified in the call, the NMF model that is used is the standard one, as defined in Equa-
tion (1). However, some NMF algorithms have different underlying models, such as non-smooth
NMF (Pascual-Montano2006) which uses an extra matrix factor that introduces an extra pa-
rameter, and change the way the target matrix is approximated.

The NMF models are defined as S4 classes that extends class NMF. All the available models can
be retreived calling the nmfModel() function with no argument:

nmfModel()

<Object of class:NMFstd>

features: 0

basis/rank: 0

samples: 0

One can specify the NMF model to use with a custom algorithm, using argument model. Here
we first adapt a bit the custom algorithm, to justify and illustrate the use of a different model.
We use model NMFOffset (Badea2008), that includes an offset to take into account genes that
have constant expression levels accross the samples:

my.algorithm.offset <- function(x, seed, scale.factor=1){
do something with starting point

...

for example:

1. compute principal components

pca <- prcomp(t(x), retx=TRUE)

retrieve the model being estimated

data.model <- fit(seed)

2. use the absolute values of the first PCs for the metagenes

Note: the factorization rank is stored in object 'start'

factorization.rank <- nbasis(data.model)

basis(data.model) <- abs(pca$rotation[,1:factorization.rank])

use the rotated matrix to get the mixture coefficient

use a scaling factor (just to illustrate the use of extra parameters)

coef(data.model) <- t(abs(pca$x[,1:factorization.rank])) / scale.factor

3. Compute the offset as the mean expression

data.model@offset <- rowMeans(x)

return updated data

fit(seed) <- data.model

seed

}

Then run the algorithm specifying it needs model NMFOffset:

31

run custom algorithm with NMF model with offset

nmf(V, 3, my.algorithm.offset, model='NMFOffset', scale.factor=10)

<Object of class: NMFfit>

Model:

<Object of class:NMFOffset>

features: 50

basis/rank: 3

samples: 20

offset: [0.8454748 0.8168729 0.4680196 0.2121849 0.6002035 ...]

Details:

algorithm: nmf_22a25dd5e8d4

seed: random

RNG: 10403L, 51L, ..., 959036133L [e43715ae36fc01464a888994f241d3bc]

distance metric: 'euclidean'

residuals: 300.2108

parameters: scale.factor=10

Timing:

user system elapsed

0.011 0.000 0.010

3.2 Custom seeding method

The user can also define custom seeding method as a function of the form:

start: object of class NMF

target: the target matrix

my.seeding.method <- function(model, target){

use only the largest columns for W

w.cols <- apply(target, 2, function(x) sqrt(sum(x^2)))

basis(model) <- target[,order(w.cols)[1:nbasis(model)]]

initialize H randomly

coef(model) <- matrix(runif(nbasis(model)*ncol(target))

, nbasis(model), ncol(target))

return updated object

return(model)

}

To use the new seeding method:

nmf(V, 3, 'snmf/r', seed=my.seeding.method)

<Object of class: NMFfit>

Model:

<Object of class:NMFstd>

features: 50

basis/rank: 3

samples: 20

Details:

algorithm: snmf/r

32

seed: NMF.seed.22a2c2e34ff

RNG: 10403L, 311L, ..., 959036133L [160093b7fd363e6b40c878c355b4cdae]

distance metric: <function>

residuals: 196.7261

Iterations: 65

Timing:

user system elapsed

0.313 0.164 0.162

4 Advanced usage

4.1 Package specific options

The package specific options can be retieved or changed using the nmf.getOption and nmf.options

functions. These behave similarly as the getOption and nmf.options base functions:

#show default algorithm and seeding method

nmf.options('default.algorithm', 'default.seed')

$default.algorithm

[1] "brunet"

##

$default.seed

[1] "random"

retrieve a single option

nmf.getOption('default.seed')

[1] "random"

All options

nmf.options()

Currently the following options are available:

cores Default number of cores to use to perform parallel NMF computations. Note that this
option is effectively used only if the global option ’cores’ is not set. Moreover, the number
of cores can also be set at runtime, in the call to nmf, via arguments .pbackend or .options
(see nmf for more details).

default.algorithm Default NMF algorithm used by the nmf function when argument method

is missing. The value should the key of one of the registered NMF algorithms or a valid
specification of an NMF algorithm. See ?nmfAlgorithm.

default.seed Default seeding method used by the nmf function when argument seed is missing.
The value should the key of one of the registered seeding methods or a vallid specification
of a seeding method. See ?nmfSeed.

track Toggle default residual tracking. When TRUE, the nmf function compute and store the
residual track in the result – if not otherwise specified in argument .options. Note that
tracking may significantly slow down the computations.

track.interval Number of iterations between two points in the residual track. This option is
relevant only when residual tracking is enabled. See ?nmf.

33

error.track this is a symbolic link to option track for backward compatibility.

pbackend Default loop/parallel foreach backend used by the nmf function when argument .pbackend
is missing. Currently the following values are supported: ’par’ for multicore, ’seq’ for se-
quential, NA for standard sapply (i.e. do not use a foreach loop), NULL for using the currently
registered foreach backend.

parallel.backend this is a symbolic link to option pbackend for backward compatibility.

gc Interval/frequency (in number of runs) at which garbage collection is performed.

verbose Default level of verbosity.

debug Toogles debug mode. In this mode the console output may be very – very – messy, and is
aimed at debugging only.

maxIter Default maximum number of iteration to use (default NULL). This option is for inter-
nal/technical usage only, to globally speed up examples or tests of NMF algorithms. To be
used with care at one’s own risk... It is documented here so that advanced users are aware
of its existence, and can avoid possible conflict with their own custom options.

The default/current values of each options can be displayed using the function nmf.printOptions:

nmf.printOptions()

<Package specific options: package:NMF>

Registered: FALSE

Options:

List of 13

$ default.algorithm: chr "brunet"

$ default.seed : chr "random"

$ error.track : 'option_symlink' chr "track"

$ track : logi FALSE

$ track.interval : num 30

$ gc : num 50

$ parallel.backend : 'option_symlink' chr "pbackend"

$ pbackend : chr "par"

$ verbose : logi FALSE

$ debug : logi FALSE

$ grid.patch : logi FALSE

$ shared.memory : logi TRUE

$ cores : num 2

Defaults:

List of 12

$ default.algorithm: chr "brunet"

$ default.seed : chr "random"

$ error.track : 'option_symlink' chr "track"

$ track : logi FALSE

$ track.interval : num 30

$ gc : num 50

$ parallel.backend : 'option_symlink' chr "pbackend"

$ pbackend : chr "par"

$ verbose : logi FALSE

$ debug : logi FALSE

$ grid.patch : logi FALSE

$ shared.memory : logi TRUE

34

5 Session Info

• R version 3.6.1 (2019-07-05), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_IE.UTF-8, LC_COLLATE=C,
LC_MONETARY=en_IE.UTF-8, LC_MESSAGES=en_US.UTF-8, LC_PAPER=en_IE.UTF-8,
LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C, LC_MEASUREMENT=en_IE.UTF-8,
LC_IDENTIFICATION=C

• Running under: Ubuntu 18.04.4 LTS

• Matrix products: default

• BLAS: /usr/lib/x86_64-linux-gnu/openblas/libblas.so.3

• LAPACK: /usr/lib/x86_64-linux-gnu/libopenblasp-r0.2.20.so

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

• Other packages: Biobase 2.44.0, BiocGenerics 0.30.0, NMF 0.22.0, RColorBrewer 1.1-2,
bigmemory 4.5.36, cluster 2.1.0, doParallel 1.0.15, foreach 1.4.7, iterators 1.0.12, knitr 1.24,
pkgmaker 0.27, registry 0.5-1, rngtools 1.4, synchronicity 1.3.5, xtable 1.8-4

• Loaded via a namespace (and not attached): R6 2.4.0, Rcpp 1.0.2, assertthat 0.2.1,
bibtex 0.4.2, bigmemory.sri 0.1.3, codetools 0.2-16, colorspace 1.4-1, compiler 3.6.1,
crayon 1.3.4, digest 0.6.20, dplyr 0.8.3, evaluate 0.14, ggplot2 3.2.1, glue 1.3.1, grid 3.6.1,
gridBase 0.4-7, gtable 0.3.0, highr 0.8, labeling 0.3, lazyeval 0.2.2, magrittr 1.5,
munsell 0.5.0, pillar 1.4.2, pkgconfig 2.0.2, plyr 1.8.4, purrr 0.3.3, reshape2 1.4.3,
rlang 0.4.2, scales 1.0.0, stringi 1.4.3, stringr 1.4.0, tibble 2.1.3, tidyselect 0.2.5, tools 3.6.1,
uuid 0.1-2, withr 2.1.2, xfun 0.9

35

if(requireNamespace("Biobase", quietly=TRUE)){
The cell type is used to label rows and columns

consensusmap(res.multirun, annCol=esGolub, tracks=NA)

plot(1:10)

f2 <- fig_path("2.pdf")

}

A
LL_549_B

−
cell

A
LL_R

11_B
−

cell

A
LL_5982_B

−
cell

A
LL_18239_B

−
cell

A
LL_20185_B

−
cell

A
LL_17929_B

−
cell

A
LL_20414_B

−
cell

A
LL_19183_B

−
cell

A
LL_17281_B

−
cell

A
LL_9335_B

−
cell

A
LL_28373_B

−
cell

A
LL_19769_B

−
cell

A
LL_23953_B

−
cell

A
LL_16415_T

−
cell

A
LL_22474_T

−
cell

A
LL_17638_T

−
cell

A
LL_14402_T

−
cell

A
LL_17269_T

−
cell

A
LL_9723_T

−
cell

A
LL_9186_T

−
cell

A
LL_19881_T

−
cell

A
LL_R

23_B
−

cell

A
LL_11103_B

−
cell

A
LL_9692_B

−
cell

A
LL_21302_B

−
cell

A
M

L_13

A
M

L_7

A
M

L_6

A
M

L_5

A
M

L_3

A
M

L_2

A
M

L_1

A
M

L_20

A
M

L_16

A
M

L_14

A
M

L_12

A
LL_14749_B

−
cell

A
LL_7092_B

−
cell

ALL_7092_B−cell

ALL_14749_B−cell

AML_12

AML_14

AML_16

AML_20

AML_1

AML_2

AML_3

AML_5

AML_6

AML_7

AML_13

ALL_21302_B−cell

ALL_9692_B−cell

ALL_11103_B−cell

ALL_R23_B−cell

ALL_19881_T−cell

ALL_9186_T−cell

ALL_9723_T−cell

ALL_17269_T−cell

ALL_14402_T−cell

ALL_17638_T−cell

ALL_22474_T−cell

ALL_16415_T−cell

ALL_23953_B−cell

ALL_19769_B−cell

ALL_28373_B−cell

ALL_9335_B−cell

ALL_17281_B−cell

ALL_19183_B−cell

ALL_20414_B−cell

ALL_17929_B−cell

ALL_20185_B−cell

ALL_18239_B−cell

ALL_5982_B−cell

ALL_R11_B−cell

ALL_549_B−cell ALL.AML
ALL
AML

Cell

B−cell
T−cell

0

0.2

0.4

0.6

0.8

1

Consensus matrix

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2
4

6
8

10

Index

1:
10

Figure 6: Heatmap of consensus matrices from 10 runs on the reduced dataset (left) and from
100 runs on the complete Golub dataset (right).

36

	Overview
	Package features
	Nonnegative Matrix Factorization
	Algorithms
	Initialization: seeding methods
	How to run NMF algorithms
	Performances
	How to cite the package NMF

	Use case: Golub dataset
	Single run
	Performing a single run
	Handling the result
	Extracting metagene-specific features

	Specifying the algorithm
	Built-in algorithms
	Custom algorithms

	Specifying the seeding method
	Built-in seeding methods
	Numerical seed
	Fixed factorization
	Custom function

	Multiple runs
	Parallel computations
	Memory considerations
	Parallel foreach backends
	Runtime options
	High Performance Computing on a cluster
	Forcing sequential execution

	Estimating the factorization rank
	Overfitting

	Comparing algorithms
	Visualization methods

	Extending the package
	Custom algorithm
	Using a custom algorithm
	Using a custom distance measure
	Defining algorithms for mixed sign data
	Specifying the NMF model

	Custom seeding method

	Advanced usage
	Package specific options

	Session Info

