
MS RFC 3: Feature Layer Plug-in Architecture
Date: 2005/08/22

Author: Jani Averbach

Contact: javerbach at extendthereach.com

Last Edited: 2008-12-23

Status: Adopted

Version: MapServer 4.8

Id: ms-rfc-3.txt 8278 2008-12-23 21:34:31Z hobu

Abstract Solution
Implement a virtual table structure for layerObj. This structure will contain function pointers for all layer
specific operations. This structure will be populated when the layer is opened or first time accessed. After
that all back-end format specific layer operations will happen through this vtable which is cached in the
layerObj struct.

Technical Solution
All file names and numbers are against released MapServer 4.6.0 source code.

1. Add new field to the layerObj. It will be pointer to the vtable, which will contain function pointers for
this layer.

2. Add the virtual table architecture

The vtable will be initialized when the layer is accessed at the first time. The vtable will be populated
with dummies when it is created and these dummies will implement feasible default actions if there is
any (e.g. do nothing) or return error by default.

2.1. Standard functions which are found currently from maplayer.c

2.1.1. InitItemInfo

int (*LayerInitItemInfo)(layerObj *layer);

2.1.2. FreeItemInfo

void (*LayerFreeItemInfo)(layerObj *layer);

2.1.3. Open

int (*LayerOpen)(layerObj *layer);

Currently there are two layers which accept more than the generic layer arg for LayerOpen
function:

int msOGRLayerOpen(layerObj *layer,
 const char *pszOverrideConnection);
int msWFSLayerOpen(layerObj *lp,
 const char *pszGMLFilename,
 rectObj *defaultBBOX);

However, these are called from msLayerOpen with NULL args, so I think that proposed
interface for this virtual table function should be fine.

2.1.4. IsOpen

int (*LayerIsOpen)(layerObj *layer);

2.1.5. WhichShapes

int (*LayerWhichShapes)(layerObj *layer,
 rectObj rect);

2.1.6. NextShape

int (*LayerNextShape)(layerObj *layer, shapeObj *shape);

2.1.7. GetShape

int (*LayerGetShape)(layerObj *layer, shapeObj *shape,
 int tile, long record);

2.1.8. LayerClose

int (*LayerClose)(layerObj *layer);

2.1.9. LayerGetItems

int (*LayerGetItems)(layerObj *layer);

2.1.10. GetExtent

int (*LayerGetExtent)(layerObj *layer,
 rectObj *extent);

2.1.11. GetAutoStyle

int (*LayerGetAutoStyle)(mapObj *map, layerObj *layer,
 classObj *c, int tile,
 long record);

2.2. New functions and/or fields for vtable

2.2.1. CloseConnection

This function is used to actually close the connection, in case that layer implements some
kind of connection pooling by its own. If layer doesn't use any connection pooling, this
function should be implemented as no-op. Caller should first call layer's "close" function, and
finally at the very end CloseConnection.

The signature of function is

int (*LayerCloseConnection)(layerObj *layer);

And the main place where this function will be called, is mapfile.c: 4822

void msCloseConnections(mapObj *map)

This function is needed because e.g. POSTGIS is implementing this usage pattern at the
moment maplayer.c:599

 void msLayerClose(layerObj *layer)
 ...
/*
 * Due to connection sharing, we need to close the results
 * and free the cursor, but not close the connection.
 */
 msPOSTGISLayerResultClose(layer);

2.2.2. SetTimeFilter

This function is used to create a time filter for layer. At the moment we have three special
cases (maplayer.c: 1635):

1. POSTGIS with it's own function

2. Layers with backticks delimited expressions

3. Layers without backticks

The idea is provide a generic helper function,

int makeTimeFilter(layerObj *lp,
 const char *timestring,
 const char *timefield,
 const bool bBackTicks)

And the actual layer's SetTimeFilter could use the above, or implement something
totally different as POSTGIS is doing at the moment.

The signature for layer's vtable function is

int (*LayerSetTimeFilter)(layerObj *lp,
 const char *timestring,
 const char *timefield);

2.3. Extra functions to add to the vtable

2.3.1. FLTApplyFilterToLayer (mapogcfilter.c: 1084)

This is the main filter interface for layers. We will provide two helper functions, one for "SQL"
case and the another for "non-SQL" case, and set all layers, except POSTGIS,

ORACLESPATIAL and OGR to call directly this "non-SQL" version of this helper function
(else-branch of if).

ORACLESPATIAL, POSTGIS and OGR could use "SQL" version of the helper function (actual
if-branch) if the conditions for this are met, otherwise they will use Non-SQL version of the
function.

2.3.2. layerObj->items allocation

There will be vtable function for allocation items and initialization for numitems. If layer
has some special needs for these objects it can override default function.

The signature for function will be:

int (*CreateItems)(layerObj *)

which does the allocation and set numitems to correct value.

2.3.3. msCheckConnection (mapfile.c: 4779)

This API is deprecated. It is called only from msMYGISLayerOpen. We will not provide this
functionality through vtable.

2.4. Interface functions for internal layers

We have to add some new interface functions to access layers.

2.4.1 Function interface to initialize internal layer type

We need a per layer type a function which will be called when the layer's vtable has to be
initialized. These functions will be

int msXXXInitializeLayerVirtualTable(layerObj *)

where XXX will be name of the layer. This function is called anytime when the vtable isn't
initialized and the layer is accessed at the first time.

2.4.2 Function interface to change the connectiontype of layer

To change the connection type of layer, it has to be done by function interface. Accessing
directly connectiontype field is not supported anymore.

To change the connectiontype and to connect to the new layer, there will be following
interface function

int msConnectLayer(int connectiontype,
 const char *library_str)

where connectiontype is the type of new layer, and library_str is the name of library
which will prodive functionality for this new layer. For internal layer types this second
argument is ignored.

3. Remove unwanted interfaces

Frank Warmerdam proposed FW1 that we remove all layer specific interface functions from map.h.

I see each "built-in" module such as mapsde.c providing a registration function such as
"msSDEInitializeLayerVirtualTable" so that none of the layer type specific definitions need to
appear in map.h any more.

Files and objects affected
This proposal will affect at least following files and objects:

• map.h

• layerObj will contain new fields. There will be a new object vtableObj in the map.h.

• maplayer.c

• Various changes, layer specific switch-statements will go away, vtable handling and layers
vtable initialization will be added.

• mapfile.c

• Cleaning of msCheckConnection

• Vtable for msCloseConnection

• mapogcfilter.c

• Remove layer-logic from FLTApplyFilterToLayer

• mapXXX.c, where XXX is the name of layer.

• Add new initialization function

• Add all new interface functions

• Fix existing interface functions, if needed / add wrappers for msOGRLayerOpen and
msWFSLayerOpen.

Backwards compatibility issues
This is binary and source code level backward incompatible change. The proposal will remove some
previously public functions, and add new field(s) to the layerObj struct.

This proposal is not MapScript backward compatible, it will break scripts which change directly
connectiontype field in layerObj.

The proposal is MAP-file backward compatible.

Implementation Issues

• Biggest problem is probably that the author has ignored or missed something by oversight which will
show up during implementation. However, there is a prototype implementation of external plug-in
architecture which works at the moment and is based on ideas presented in this proposal. So there is
some real life experience that this architecture change is feasible thing to do.

• I also like to note that this proposal won't remove all layer specific code from MapServer e.g. WMF,
WMS and GRATICULE are used as special cases from place to place.

Bug ID
Bug 1477

Voting history
Vote proposed by Jani Averbach on 9/19/2005, result was +4 (3 non-voting members).

Voting +1: Howard Butler, Frank Warmerdam, Yewondwossen Assefa, Daniel Morissette

Proposal passes and will move forward.

http://trac.osgeo.org/mapserver/ticket/1477

Open questions

• How do we like to expose layer's virtual table to the layers. We have at least two different routes to
go:

• expose it as a struct, layers will fill vtable pointers by accessing directly struct's field.

• expose it as a complete opaque type, vtable pointers will be set by accessing functions
setLayerOpenFP, setLayerCloseFP and so on.

The advance of second option is that this way we could easily add new functions to the struct if we
refactor code more or found some logic which is ignored by oversight in this proposal.

• Are there any special issues with the raster query layer support which is handled via the layer API?

FW1
Frank Warmerdam on the mapserver-dev:
Message-Id: <smtpd.490f.4303f2ee.d8246.1@mtaout-c.tc.umn.edu>
Date: Wed, 17 Aug 2005 22:31:09 -0400
Subject: Re: Mapserver Plug-in Infastructure: RFC and PATCH

	Abstract Solution
	Technical Solution
	Files and objects affected
	Backwards compatibility issues
	Implementation Issues
	Bug ID
	Voting history
	Open questions

