

[bookmark: _Toc536448929][bookmark: _Toc536448983][bookmark: _Toc536469468][bookmark: _Toc1574652][bookmark: _Toc23523449]NNDCT user guide
wluo@xilinx.com niuxj@xilinx.com
Table of contents
NNDCT user guide	1
Introduction	2
Install	2
Tool Usage	2
Quick Start	3
Support op list	5

[bookmark: _Toc23523450]Introduction
Neural Network Deep Compression Toolkit (NNDCT) is designed as a standard platform for neural network deep compression. The architecture is like LLVM—a cross platform compiler for different language. Base on this architecture, working stages of NNDCT follows:
1. Parse neural network computation graph from different frameworks such as Tensorflow, Pytorch and Caffe to intermediate representation (IR).
2. Modify the computation graph based on IR. Pruning, quantization and graph optimization are handled in this stage.
3. Deploy the modified IR on different platform, such as DPU, GPU, CPU, Xilinx AI Engine.
4. Assemble the modified computation graph back to frameworks. In that way abilities and tools in framework such as pre-processing, post processing and distribution system can be used.
Besides being used as platform, NNDCT can also be used as tool chain for deep compression of neural networks, so that full stack solutions for AI applications can be produced. For this target, high-level APIs are given for handling tasks related to neural network deep compression.
For users that need a quick start, there is an example under nndct/example.
Support op list gives supported operation list.
[bookmark: _Toc23523451]Install
Follow the README.
[bookmark: _Ref536286209][bookmark: _Ref6323172][bookmark: _Ref6323207][bookmark: _Toc23523452]Tool Usage
This chapter introduce using execution tools and APIs to implement quantization, graph optimization procedures. An example can be found under:
nndct/example
For using the APIs and tools, some concepts should be explained.
· Quantizable graph: if a graph is quantizable, scanning operations (for configuring quantization) and quantize tensor operations (for quantization) can be automatically generated and applied during graph building stage. And this can be done by setting a quantization FLAG in the environment.
· Quantization mode: an integer that indicates which quantization mode the process is using. 0 for turning off quantization. 1 for calibration of quantization. 2 for evaluation of quantized model.
[bookmark: _Toc23523453]Quick Start
An example case is nndct/example/resnet18_quant.py. To call NNDCT, some parts of code needs to be added:
1. Import NNDCT modules
from nndct_shared.utils import print_center_edge
from nndct_shared.utils import basic_info
from nndct_shared.utils import check_diff
from nndct_shared.apis import utils as api_utils

from nndct_shared.apis.env_setter import init_modification_env
from pytorch_nndct.nndct.apis import register_modification_hooks
from pytorch_nndct.nndct.apis import clear_modification_hooks
from pytorch_nndct.nndct.apis import load_state_dict
from pytorch_nndct.nndct.apis.torch_modifier import TORCHModifier

from pytorch_nndct.nndct.utils import post_process
from pytorch_nndct.nndct.load import TORCHStateDictDataLoader
from pytorch_nndct.nndct.models.utils.resnet_process import load_data

2. Integrate NNDCT command line parameter
args = api_utils.define_flags(TORCHModifier, parser)

3. Set NNDCT options
init_modification_env(
 TORCHModifier,
 args,
 loader_cls = TORCHStateDictDataLoader,
 data_file = file_path,
 optimize = args.optimize,
 quant_kwargs = {
 'calibration_strategy': {'method': 'DiffS'}
 }
)

4. Transform original models to NNDCT format
batch_size = 32
get input data
 input = torch.randn([batch_size, 3, 224, 224])
model_gen = api_utils.rebuilt_model(
 model,
 inputs= (input),
 state_dict_or_file=file_path)
 load_state_dict(model_gen, file_path)

5. Register quantization hooks
register_modification_hooks(model_gen, train=False)

6. Output and hooks cleanup
post_process(model_gen, args.quant_file)
clear_modification_hooks()
[bookmark: _GoBack]
To do calibration of quantization, run the following command line:
python resnet18_quant.py --quant_mode 1
After it is finished, two important files will be generated under output directory NndctGenData. NndctGen_Graph.py is transformed NNDCT format model, and NndctGen_Graph_quant.json is quanzation steps got.

To do evaluation of quantized model, run the following command line:
python resnet18_quant.py --quant_mode 2
[bookmark: _Ref536447524][bookmark: _Toc23523454]Support op list
Limited by resources, NNDCT do not support all operations in pytorch currently. New supported operations will be added from time to time. The table below shows the operation type that NNDCT currently support.
Attention: The list only shows basic supported operations. If the operation is combination of several operations that in the list, the operation is also supported.

	Op type
	Quantizable

	torch.nn.Conv2d
	Y

	torch.nn.ConvTranspose2d
	Y

	torch.nn.BatchNorm2d
	Y

	torch.nn.MaxPool2d
	Y

	torch.nn.AvgPool2d
	Y

	torch.nn. AdaptiveAvgPool2d
	Y

	torch.size
	N

	torch.nn.Linear
	Y

	torch.Tensor.view
	N

	torch.cat
	Y

	torch.nn.Dropout
	N

	torch.zeros
	N

	torch.nn.Hardtanh
	N

	torch.transpose
	N

	torch.nn.Softmax
	N

	torch.sum
	N

	torch.mean
	Y

	torch.chunk
	N

	torch.nn.ReLU
	N

	torch.nn.Threshold
	N

	torch.nn.UpsamplingBilinear2d
	Y

	torch.mul
	Y

	torch.add
	Y

	torch.Tensor.contiguous
	N

	torch.floor
	N

[bookmark: XILINX1FooterFirstPage]© Copyright 2019 Xilinx
1

[bookmark: XILINX1FooterEvenPages]© Copyright 2019 Xilinx
14

[bookmark: XILINX1FooterPrimary]© Copyright 2019 Xilinx
15

